Skip to main content
Log in

Synthesis and antioxidant properties of (dodecylsulfanyl)methyl derivatives of hydroquinone

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

2-(Dodecylsulfanyl)methyl-, 2,6- and 2,5-bis[(dodecylsulfanyl)methyl]-substituted derivatives of hydroquinone were synthesized. Under the conditions of AIBN-initiated oxidation of styrene (37 °C), these compounds were found to terminate the oxidation chains with the stoichiometric inhibition coefficients of 1.8–2.1 and rate constants of 2.0 · 105, 1.9 · 105, and 6.5 · 104 mol L−1 s−1, respectively. Based on the rate constants, the O-H bond energies in the molecules of hydroquinone and its (dodecylsulfanyl)methyl-substituted derivatives were calculated and found to be equal to 340.9, 346.8, 347.1, and 353.1 kJ mol−1, respectively. It was established that the reactivity of (dodecylsulfanyl)-methyl-substituted derivatives of hydroquinone with respect to peroxide radicals was significantly affected by intramolecular hydrogen bonds O-H⋯S: the rate constants decreased by 2.8–8.5 times compared to hydroquinone. The synthesized thio derivatives of hydroquinone were found to be 2.7–6.7 times superior to the reference phenolic antioxidants (BHT, BHA, hydroquinone, and tert-butylhydroquinone) and 1.7–2.4 times to the sulfur-containing phenolic antioxidant Irganox-1726 in the duration of inhibition of thermal autoxidation of lard; 2,5-bis[(dodecylsulfanyl)methyl]hydroquinone was characterized by the greatest inhibitory effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Meier, H. Kuenzi, G. Knobloch, G. Rist, M. Szelagiewicz, Phosphorus, Sulfur, Silicon Relat. Elem., 1999, 153–154, 275; DOI: https://doi.org/10.1080/10426509908546440.

    Article  Google Scholar 

  2. S. A. Nizomov, I. V. Sorokina, N. A. Zhukova, T. G. Tolstikova, D. E. Semenov, A. E. Prosenko, Bulletin of Experimental Biology and Medicine, 2019, 167, 809; DOI: https://doi.org/10.1007/s10517-019-04628-4.

    Article  CAS  PubMed  Google Scholar 

  3. Pat RF 2447888 C1; Chem. Abstr., 2012, 156, 525480.

  4. US Pat. 20040176252 A1; Chem. Abstr., 2004, 138, 137333.

  5. C. Strietzel, M. Sterby, H. Huang, M. Strømme, R. Emanuelsson, M. Sjödin, Angew. Chem., Int. Ed. Engl., 2020, 59, 9631; DOI: https://doi.org/10.1002/anie.202001191.

    Article  CAS  Google Scholar 

  6. E. Chakrabarti, S. Ghosh, S. Sadhukhan, L. Sayre, G. P. Tochtrop, J. D. Smith, J. Med. Chem., 2010, 53, 5302; DOI: https://doi.org/10.1021/jm100308g.

    Article  CAS  PubMed  Google Scholar 

  7. A. Lélias-Vanderperre, J.-C. Chambron, E. Espinosa, P. Terrier, E. Leize-Wagner, Org. Lett., 2007, 9, 2961; DOI: https://doi.org/10.1021/ol070498a.

    Article  PubMed  Google Scholar 

  8. H. Konishi, T. Inoue, K. Kobayashi, O. Morikdwa, Synth. Commun., 1999, 29, 227; DOI: https://doi.org/10.1080/00397919908085761.

    Article  CAS  Google Scholar 

  9. T. K. Bagavieva, S. E. Yagunov, S. V. Kholshin, I. A. Emelyanova, O. I. Prosenko, A. E. Prosenko, Russ. Chem. Bull., 2019, 68, 2283; DOI: https://doi.org/10.1007/s11172-019-2701-2.

    Article  CAS  Google Scholar 

  10. A. E. Prosenko, O. I. Dyubchenko, E. I. Terakh, A. F. Markov, E. A. Gorokh, M. A. Boiko, Petroleum Chemistry (Engl. Transl.), 2006, 46, 283; DOI: https://doi.org/10.1134/S0965544106040116.

    Google Scholar 

  11. D. Loshadkin, V. Roginsky, E. Pliss, Int. J. Chem. Kinet., 2002, 34, 162; DOI: https://doi.org/10.1002/kin.10041.

    Article  CAS  Google Scholar 

  12. M. C. Foti, L. R. C. Barclay, K. U. Ingold, J. Am. Chem. Soc., 2002, 124, 12881; DOI: https://doi.org/10.1021/ja020757l.

    Article  CAS  PubMed  Google Scholar 

  13. C. Hansch, A. Leo, R. W. Taft, Chem. Rev., 1991, 91, 165; DOI: https://doi.org/10.1021/cr00002a004.

    Article  CAS  Google Scholar 

  14. E. T. Denisov, T. G. Denisova, Russ. Chem. Rev., 2009, 78, 1047; DOI: https://doi.org/10.1070/RC2009v078n11ABEH004084.

    Article  CAS  Google Scholar 

  15. F. G. Bordwell, J.-P. Chengt, J. Am. Chem. Soc., 1991, 113, 1736; DOI: https://doi.org/10.1021/ja00005a042.

    Article  CAS  Google Scholar 

  16. G. W. Burton, T. Doba, E. J. Gabe, L. Hughes, F. L. Lee, L. Prasad, K. U. Ingold, J. Am. Chem. Soc., 1985, 107, 7053; DOI: https://doi.org/10.1021/ja00310a049.

    Article  CAS  Google Scholar 

  17. E. T. Denisov, I. B. Afanas’ev, Oxidation and Antioxidants in Organic Chemistry and Biology, Taylor & Francis Group, 2005, 1024 pp.; DOI: https://doi.org/10.1201/9781420030853.

  18. W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, 8th ed., Elsevier, Oxford, 2017, 1198 pp.

    Google Scholar 

  19. I. M. Bugaev, A. E. Prosenko, Russ. Chem. Bull., 2010, 59, 861; DOI: https://doi.org/10.1007/s11172-010-0175-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Yagunov.

Additional information

Dedicated to the memory of Professor Alexander Evgenievich Prosenko.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2199–2206, October, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emelyanova, I.A., Yagunov, S.E., Kholshin, S.V. et al. Synthesis and antioxidant properties of (dodecylsulfanyl)methyl derivatives of hydroquinone. Russ Chem Bull 71, 2199–2206 (2022). https://doi.org/10.1007/s11172-022-3646-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3646-4

Key words

Navigation