Skip to main content
Log in

Mixed-valence hexanuclear CoII,III complex with amidoxime: synthesis, structure, and in vitro biological activity against the non-pathogenic strain of Mycolicibacterium smegmatis

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reaction of cobalt(ɪɪ) chloride with p-Br-benzoyl-β-(piperidin-1-yl)propioamid-oxime (Linit) in methanol leads to the hydrolysis of the ligand at the -OCO- ester bond and the formation of the mixed-valence hexanuclear ionic complex [CoII2CoIII4(HL)4(L)2(O)-(Cl)4]Cl2•4CH3OH (1) (L is β-(piperidin-l-yl)propioamidoxime). According to the X-ray diffraction data, the ligand (L) in 1 is coordinated to the complexing agent in different modes: the μ3-bridging-chelating mode (involving deprotonated amino groups) and the μ2- and μ3-bridging-chelating modes in the case of a coordinated amino group. Two cobalt atoms of the hexanuclear metal core have a tetrahedral coordination geometry (CoIIN2Cl2; CNCoII = 4), whereas the other four cobalt atoms are in an octahedral coordination environment of nitrogen and oxygen atoms forming the polyhedra of composition CoIIIO3N3 and CoIIIO4N2 (CNCoIII = 6). The evaluation of the in vitro biological activity of 1 against the non-pathogenic (virulent H37Rv model) mycobacterial strain of Mycolicibacterium smegmatis showed an increase in the efficiency of complex 1 by more than 4–12 times compared to the previously studied CoII,III complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Rashad, O. A. Fouad, Mater. Chem. Phys., 2005, 94, 365; DOI: https://doi.org/10.1016/j.matchemphys.2005.05.028.

    Article  CAS  Google Scholar 

  2. M. K. Karunananda, F. X. Vázquez, E. E. Alp, W. Bi, S. Chattopadhyay, T. Shibatad, N. P. Mankad, Dalton Trans., 2014, 43, 13661; DOI: https://doi.org/10.1039/C4DT01841A.

    Article  CAS  PubMed  Google Scholar 

  3. M. Veith, M. Haas, V. Huch, Chem. Mater., 2005, 17, 95; DOI: https://doi.org/10.1021/cm0401802.

    Article  CAS  Google Scholar 

  4. R. V. Godbole, P. Rao, P. S. Alegaonkar, S. Bhagwat, Mater. Chem. Phys., 2015, 161, 135; DOI: https://doi.org/10.1016/j.matchemphys.2015.05.028.

    Article  CAS  Google Scholar 

  5. L. W. Yeary, J. W. Moon, C. J. Rawn, L. J. Love, A. J. Rondinone, J. R. Thompson, B. C. Chakoumakos, T. J. Phelps, J. Magn. Magn. Mater., 2011, 323, 3043; DOI: https://doi.org/10.1016/j.jmmm.2011.06.049.

    Article  CAS  Google Scholar 

  6. K. D. Mjos, C. Orvig, Chem. Rev., 2014, 114, 4540; DOI: https://doi.org/10.1021/cr400460s.

    Article  CAS  PubMed  Google Scholar 

  7. M. J. Cleare, J. D. Hoeschele, Bioinorg. Chem., 1973, 2, 187; DOI: https://doi.org/10.1016/S0006-3061(00)80249-5.

    Article  CAS  Google Scholar 

  8. M. J. Cleare, J. D. Hoeschele, Platinum Met. Rev., 1973, 17, 2.

    CAS  Google Scholar 

  9. S. Gibaud, G. Jaouen, Med. Organometall. Chem., 2010, 32, 1; DOI: https://doi.org/10.1007/978-3-642-13185-1_1.

    Article  CAS  Google Scholar 

  10. M. Patra, G. Gasser, N. Metzler-Nolte, Dalton Trans., 2012, 41, 6350; DOI: https://doi.org/10.1039/C2DT12460B.

    Article  CAS  PubMed  Google Scholar 

  11. E. S. Honsa, M. D. L. Johnson, J. W. Rosch, Front. Cell. Infect. Microbiol., 2013, 3, 92; DOI: https://doi.org/10.3389/fcimb.2013.00092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. P. Nagababu, J. Naveena, L. Latha, P. Pallavi, S. Harish, S. Satyanarayana, Canad. J. Microbiol., 2006, 52, 1247; DOI: https://doi.org/10.1139/w06-087.

    Article  CAS  Google Scholar 

  13. K. Phopin, N. Sinthupoom, L. Treeratanapiboon, S. Kunwittaya, S. Prachayasittikul, S. Ruchirawat, V. Prachayasittikul, EXCLI J., 2016, 15, 144; DOI: https://doi.org/10.17179/excli2016-101.

    PubMed  PubMed Central  Google Scholar 

  14. B. Rosenberg, L. Vancamp, T. Krigas, Nature, 1965, 205, 698; DOI: https://doi.org/10.1038/205698A0.

    Article  CAS  PubMed  Google Scholar 

  15. O. Krasnovskaya, A. Naumov, D. Guk, P. Gorelkin, A. Erofeev, E. Beloglazkina, A. Majouga, Int. J. Mol. Sci., 2020, 21, 3965; DOI: https://doi.org/10.3390/ijms21113965.

    Article  CAS  PubMed Central  Google Scholar 

  16. A. H. Ngwane, R. D. Petersen, B. Baker, I. Wiid, H. Wong, R. K. Haynes, IUBMB Life, 2019, 71, 532; DOI: https://doi.org/10.1002/iub.2002.

    Article  CAS  PubMed  Google Scholar 

  17. I. A. Lutsenko, D. E. Baravikov, M. A. Kiskin, Yu. V. Nelyubina, P. V. Primakov, O. B. Bekker, A. V. Khoroshilov, A. A. Sidorov, I. L. Eremenko, Russ. J. Coord. Chem., 2020, 46, 411; DOI: https://doi.org/10.1134/S1070328420060056.

    Article  CAS  Google Scholar 

  18. I. A. Lutsenko, D. S. Yambulatov, M. A. Kiskin, Yu. V. Nelyubina, P. V. Primakov, O. B. Bekker, A. A. Sidorov, I. L. Eremenko, Russ. J. Coord. Chem., 2020, 46, 787; DOI: https://doi.org/10.1134/S1070328420120040.

    Article  CAS  Google Scholar 

  19. I. A. Lutsenko, D. S. Yambulatov, M. A. Kiskin, Yu. V. Nelyubina, P. V. Primakov, O. B. Bekker, O. A. Levitskiy, T. V. Magdesieva, V. K. Imshennik, Yu. V. Maksimov, A. A. Sidorov, V. N. Danilenko, I. L. Eremenko, Chem. Select., 2020, 5, 11837; DOI: https://doi.org/10.1002/slct.202003101.

    CAS  Google Scholar 

  20. I. A. Lutsenko, M. A. Kiskin, K. A. Koshenskova, P. V. Primakov, A. V. Khoroshilov, O. B. Bekker, I. L. Eremenko, Russ. Chem. Bull., 2021, 70, 463; DOI: https://doi.org/10.1007/s11172-021-3109-3.

    Article  CAS  Google Scholar 

  21. M. A. Uvarova, I. A. Lutsenko, M. A. Kiskin, Yu. V. Nelyubina, P. V. Primakov, K. A. Babeshkin, N. N. Efimov, A. S. Goloveshkin, M. A. Shmelev, A. V. Khoroshilov, E. M. Zueva, M. M. Petrova, O. B. Bekker, I. L. Eremenko, Polyhedron, 2021, 203, 115241; DOI: https://doi.org/10.1016/j.poly.2021.115241.

    Article  CAS  Google Scholar 

  22. I. A. Lutsenko, M. E. Nikiforova, K. A. Koshenskova, M. A. Kiskin, Yu. V. Nelyubina, P. V. Primakov, M. V. Fedin, O. B. Becker, V. O. Shender, I. K. Malyants, I. L. Eremenko, Russ. J. Coord. Chem., 2021, 47, 879; DOI: 101134/S1070328421350013.

    Article  Google Scholar 

  23. I. A. Lutsenko, D. E. Baravikov, K. A. Koshenskova, M. A. Kiskin, Yu. V. Nelyubina, P. V. Primakov, Y. K. Voronina, V. V. Garaeva, D. A. Aleshin, T. M. Aliev, V. N. Danilenko, O. B. Bekker, I. L. Eremenko, RSC Advances, 2022, 12, 5173; DOI: https://doi.org/10.1039/d1ra08555g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pat. 2592 (Kazakhstan); Byul. Izobret. [Inventor Bull.], 2018, 4 (in Russian).

  25. Pat. 102219 (Kazakhstan); Byul. Izobret. [Inventor Bull.], 2018, 18 (in Russian).

  26. Pat. 1983 (Kazakhstan); Byul. Izobret. [Inventor Bull.], 2017, 2 (in Russian).

  27. Pat. 12701 (Kazakhstan); Byul. Izobret. [Inventor Bull.], 2006, 7 (in Russian).

  28. V. N. Serezhkin, A. V. Vologzhanina, L. B. Serezhkina, E. S. Smirnova, E. V. Grachova, P. V. Ostrova, M. Y. Antipin, Acta Cryst., 2009, B65, 45; DOI: https://doi.org/10.1107/S0108768108038846.

    Article  Google Scholar 

  29. C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Cryst., 2016, 72, 171; DOI: https://doi.org/10.1107/S2052520616003954.

    CAS  Google Scholar 

  30. G. Y. An, Hong-Bo Wang, Ai-Li Cui, Hui-Zhong Kou, New J. Chem., 2014, 38, 5037; DOI: https://doi.org/10.1039/C4NJ01055H.

    Article  CAS  Google Scholar 

  31. H.-Z. Kou, G.-Y. An, C.-M. Ji, B.-W. Wang, A.-L. Cui, Dalton Trans., 2010, 39, 9604; DOI: https://doi.org/10.1039/C0DT00528B.

    Article  CAS  PubMed  Google Scholar 

  32. C.-M. Ji, H.-J. Yang, C.-C. Zhao, V. Tangoulis, A.-L. Cui, H.-Z. Kou, Cryst. Growth Des., 2009, 9, 4607; DOI: https://doi.org/10.1021/cg900975y.

    Article  CAS  Google Scholar 

  33. X. Jiang, G.-Y. An, C.-M. Liu, H.-Z. Kou, Eur. J. Inorg. Chem., 2015, 32, 5314; DOI: https://doi.org/10.1002/ejic.201500930.

    Article  Google Scholar 

  34. C. G. Efthymiou, L. Cunha-Silva, S. P. Perlepes, E. K. Brechin, R. Inglis, M. Evangelisti, C. Papatriantafyllopoulou, Dalton Trans., 2016, 45, 17409; DOI: https://doi.org/10.1039/C6DT03511F.

    Article  CAS  PubMed  Google Scholar 

  35. S. Ramon-García, C. Ng, H. Anderson, J. D. Chao, X. Zheng, T. Pfeifer, Y. Av-Gay, M. Roberge, C. J. Thompson, Antimikrob. Agen. Chemother., 2011, 8, 3861; DOI: https://doi.org/10.1128/AAC.00474-11.

    Article  Google Scholar 

  36. O. B. Bekker, D. N. Sokolov, O. A. Luzina, N. I. Komarova, Yu. V. Gatilov, S. N. Andreevskaya, T. G. Smirnova, D. A. Maslov, L. N. Chernousova, N. F. Salakhutdinov, V. N. Danilenko, Med. Chem. Res., 2015, 24, 2926; DOI: https://doi.org/10.1007/s00044-015-1348-2.

    Article  CAS  Google Scholar 

  37. L. A. Kayukova, I. S. Zhumadildaeva, K. D. Praliyev, Russ. Chem. Bull., 2002, 51, 2100; DOI: https://doi.org/10.1023/A:1021628430346.

    Article  CAS  Google Scholar 

  38. T. G. G. Battye, L. Kontogiannis, O. Johnson, H. R. Powell, A. G. W. Leslie, Acta Cryst., 2011, D67, 271; DOI: https://doi.org/10.1107/s0907444910048675.

    Google Scholar 

  39. P. Evans, Acta Cryst., 2006, D62, 72; DOI: https://doi.org/10.1107/S0907444905036693.

    CAS  Google Scholar 

  40. G. M. Sheldrick, Acta Cryst., 2015, A71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Google Scholar 

  41. G. M. Sheldrick, Acta Cryst., 2015, C71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Google Scholar 

  42. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339; DOI: https://doi.org/10.1107/S0021889808042726.

    Article  CAS  Google Scholar 

Download references

Funding

The study was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (grant for IRN Project No. AP08856440 and IRN Program No. BR10965255). Elemental analysis and IR spectroscopy were performed using the equipment of the Joint Research Center of Physical Investigation Methods for Substances and Materials of the N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences (JRC PMR IGIC RAS). The X-ray diff raction study of compound 1 was carried out at the National Research Center “Kurchatov Institute”. A. V. Vologzhanina is grateful to the Ministry of Science and Higher Education of the Russian Federation for the financial support (state assignment No. AAAAA18-118012590337-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Lutsenko.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2172–2178, October, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutsenko, I.A., Vologzhanina, A.V., Kayukova, L.A. et al. Mixed-valence hexanuclear CoII,III complex with amidoxime: synthesis, structure, and in vitro biological activity against the non-pathogenic strain of Mycolicibacterium smegmatis. Russ Chem Bull 71, 2172–2178 (2022). https://doi.org/10.1007/s11172-022-3643-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3643-7

Key words

Navigation