Skip to main content
Log in

NMR thermosensor properties of lanthanide complexes with diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid [Ln(H2O)(DTPA)]2− (Ln = Pr, Dy, Ho, Yb)

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The temperature dependences of paramagnetic chemical shifts in the lanthanide complexes with diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid [Ln(H2O)(DTPA)]2− (Ln = Pr, Dy, Ho, Yb) were studied by NMR spectroscopy. The dysprosium complex demonstrated the highest temperature sensitivity of chemical shifts d(δexp)/dT equal to 1.46 ppm K−1 at T = 306 K. The [Dy(H2O)(DTPA)]2− complex can be considered as the most promising thermosensor reagent for determining the local temperature in aqueous media and for advanced MRI diagnosis of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bageac, J. J. DeBevits, R. Munbodh, J. Kaplan, R. Wu, P. A. DiCamillo, C. Hu, Y. Wang, D. Karimeddini, R. T. Naismith, S. Dhib-Jalbut, L. Wolansky, Clin. Imaging, 2021, 70, 136; DOI: https://doi.org/10.1016/j.clinimag.2020.07.022.

    Article  PubMed  Google Scholar 

  2. H. J. Weinmann, R. C. Brasch, W. R. Press, G. E. Wesbey, Am. J. Roentgenol., 1984, 142, 619; DOI: https://doi.org/10.2214/ajr.142.3.619.

    Article  CAS  Google Scholar 

  3. C. A. Chang, Invest. Radiol., 1993, 28, 21; DOI: https://doi.org/10.1097/00004424-199303001-00003.

    Article  Google Scholar 

  4. R. B. Lauffer, Chem. Rev., 1987, 87, 901; DOI: https://doi.org/10.1021/cr00081a003.

    Article  CAS  Google Scholar 

  5. D. Parker, J. A. G. Williams, J. Chem. Soc. Dalt. Trans., 1996, 3613; DOI: https://doi.org/10.1039/dt9960003613.

  6. P. B. Tsitovich, J. M. Cox, J. B. Benedict, J. R. Morrow, Inorg. Chem., 2017, 55, 700; DOI: https://doi.org/10.1021/acs.inorgchem.5b02144.

    Article  Google Scholar 

  7. P. J. Burns, P. B. Tsitovich, J. R. Morrow, J. Chem. Educ., 2016, 93, 1115; DOI: https://doi.org/10.1021/acs.jchemed.5b00818.

    Article  CAS  Google Scholar 

  8. P. K. Senanayake, N. J. Rogers, K. L. N. A. Finney, P. Harvey, A. M. Funk, J. I. Wilson, D. O’Hogain, R. Maxwell, D. Parker, A. M. Blamire, Magn. Reson. Med., 2017, 77, 1307; DOI: https://doi.org/10.1002/mrm.26185.

    Article  PubMed  Google Scholar 

  9. H. K. F. Trübel, P. K. Maciejewski, J. H. Farber, F. Hyder, J. Appl. Physiol., 2003, 94, 1641; DOI: https://doi.org/10.1152/japplphysiol.00841.2002.

    Article  PubMed  Google Scholar 

  10. S. P. Babailov, Inorg. Chem., 2012, 51, 1427; DOI: https://doi.org/10.1021/ic201662q.

    Article  CAS  PubMed  Google Scholar 

  11. S. P. Babailov, E. V. Peresypkina, Y. Journaux, K. E. Vostrikova, Sens. Actuators B Chem., 2017, 239, 405; DOI: https://doi.org/10.1016/j.snb.2016.08.015.

    Article  CAS  Google Scholar 

  12. S. P. Babailov, E. N. Zapolotsky, Polyhedron, 2020, 114908; DOI: https://doi.org/10.1016/j.poly.2020.114908.

  13. A. E. Thorarinsdottir, A. I. Gaudette, T. D. Harris, Chem. Sci., 2017, 8, 2448; DOI: https://doi.org/10.1039/C6SC04287B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. Woods, S. Aime, M. Botta, J. A. K. Howard, J. M. Moloney, M. Navet, D. Parker, M. Port, O. Rousseaux, J. Am. Chem. Soc., 2000, 122, 9781; DOI: https://doi.org/10.1021/ja994492v.

    Article  CAS  Google Scholar 

  15. S. Aime, M. Botta, M. Fasano, S. L. Paoletti, P. Anelli, F. Uggeri, M. Virtuani, Inorg. Chem., 1994, 33, 4707; DOI: https://doi.org/10.1021/ic00099a021.

    Article  CAS  Google Scholar 

  16. E. N. Zapolotsky, Y. Qu, S. P. Babailov, J. Incl. Phenom. Macrocycl. Chem., 2022, 102, 1; DOI: https://doi.org/10.1007/s10847-021-01112-3.

    Article  CAS  PubMed  Google Scholar 

  17. V. K. Voronov, I. A. Ushakov, S. N. Adamovich, E. N. Oborina, Russ. Chem. Bull., 2021, 70, 2354; DOI: https://doi.org/10.1007/s11172-021-3352-7.

    Article  CAS  Google Scholar 

  18. O. Y. Selyutina, P. A. Kononova, S. P. Babailov, New J. Chem., 2020, 44, 18372; DOI: https://doi.org/10.1039/d0nj03707a.

    Article  CAS  Google Scholar 

  19. J. De Poorter, C. De Wagter, Y. De Deene, C. Thomsen, F. Ståhlberg, E. Achten, Magn. Reson. Med., 1995, 33, 74; DOI: https://doi.org/10.1002/mrm.1910330111.

    Article  CAS  PubMed  Google Scholar 

  20. T. Frenzel, K. Roth, S. Koßler, B. Radüchel, H. Bauer, J. Platzek, H. J. Weinmann, Magn. Reson. Med., 1996, 35, 364; DOI: https://doi.org/10.1002/mrm.1910350314.

    Article  CAS  PubMed  Google Scholar 

  21. F. Bertsch, J. Mattner, M. K. Stehling, U. Müller-Lisse, M. Peller, R. Loeffler, J. Weber, K. Meßmer, W. Wilmanns, R. Issels, M. Reiser, Magn. Reson. Imaging, 1998, 16, 393; DOI: https://doi.org/10.1016/S0730-725X(97)00311-1.

    Article  CAS  PubMed  Google Scholar 

  22. C. S. Zuo, J. L. Bowers, K. R. Metz, T. Nosaka, A. D. Sherry, M. E. Clouse, Magn. Reson. Med., 1996, 36, 955; DOI: https://doi.org/10.1002/mrm.1910360619.

    Article  CAS  PubMed  Google Scholar 

  23. C. S. Zuo, K. R. Metz, Y. Sun, A. D. Sherry, J. Magn. Reson., 1998, 133, 53; DOI: https://doi.org/10.1006/jmre.1998.1429.

    Article  CAS  PubMed  Google Scholar 

  24. Y. Sun, M. Sugawara, R. V. Mulkern, K. Hynynen, S. Mochizuki, M. Albert, C. S. Zuo, NMR Biomed., 2000, 13, 460; DOI: https://doi.org/10.1002/nbm.676.

    Article  CAS  PubMed  Google Scholar 

  25. S. K. Hekmatyar, H. Poptani, A. Babsky, D. B. Leeper, N. Bansal, Int. J. Hyperth., 2002, 18, 165; DOI: https://doi.org/10.1080/02656730110098598.

    Article  CAS  Google Scholar 

  26. S. K. Pakin, S. K. Hekmatyar, P. Hopewell, A. Babsky, N. Bansal, NMR Biomed., 2006, 19, 116; DOI: https://doi.org/10.1002/nbm.1010.

    Article  CAS  PubMed  Google Scholar 

  27. S. P. Babailov, P. V. Dubovskii, E. N. Zapolotsky, Polyhedron, 2014, 79, 277; DOI: https://doi.org/10.1016/j.poly.2014.04.067.

    Article  CAS  Google Scholar 

  28. D. Coman, H. K. Trubel, F. Hyder, NMR Biomed., 2010, 23, 277; DOI: https://doi.org/10.1002/nbm.1461.Brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. S. Babailov, A. Akulov, M. Moshkin, I. Koptyug, J. Phys. Conf. Ser., 2017, 886, 012003; DOI: https://doi.org/10.1088/1742-6596/886/1/012003.

    Article  Google Scholar 

  30. S. P. Babailov, SSRN Electron. J., 2022; DOI: https://doi.org/10.2139/ssrn.4018881.

  31. B. Bleaney, J. Magn. Reson., 1972, 8, 91; DOI: https://doi.org/10.1016/0022-2364(72)90027-3.

    CAS  Google Scholar 

  32. J. W. M. De Boer, P. J. D. Sakkers, C. W. Hilbers, E. De Boer, J. Magn. Reson., 1977, 25, 455; DOI: https://doi.org/10.1016/0022-2364(77)90209-8.

    CAS  Google Scholar 

  33. S. P. Babailov, Sens. Actuators B Chem., 2016, 233, 476; DOI: https://doi.org/10.1016/j.snb.2016.04.009.

    Article  CAS  Google Scholar 

  34. B. G. Jenkins, R. B. Lauffer, Inorg. Chem., 1988, 27, 4730; DOI: https://doi.org/10.1021/ic00299a011.

    Article  CAS  Google Scholar 

  35. J. J. Stezowski, J. L. Hoard, Isr. J. Chem., 1984, 24, 323; DOI: https://doi.org/10.1002/ijch.198400055.

    Article  CAS  Google Scholar 

  36. J. A. Peters, Inorg. Chem., 1988, 27, 4686; DOI: https://doi.org/10.1021/ic00299a003.

    Article  CAS  Google Scholar 

  37. S. P. Babailov, M. A. Polovkova, G. A. Kirakosyan, A. G. Martynov, E. N. Zapolotsky, Y. G. Gorbunova, Sens. Actuators A Phys., 2021, 331, 112933; DOI: https://doi.org/10.1016/j.sna.2021.112933.

    Article  CAS  Google Scholar 

  38. S. P. Babailov, E. N. Zapolotsky, Inorg. Chim. Acta, 2021, 527, 120555; DOI: https://doi.org/10.1016/j.ica.2021.120555.

    Article  CAS  Google Scholar 

  39. S. P. Babailov, E. N. Zapolotsky, Inorg. Chim. Acta, 2020, 517, 120153; DOI: https://doi.org/10.1016/j.ica.2020.120153.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (Project No. 20-63-46026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Babailov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2165–2171, October, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zapolotsky, E.N., Babailov, S.P. NMR thermosensor properties of lanthanide complexes with diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid [Ln(H2O)(DTPA)]2− (Ln = Pr, Dy, Ho, Yb). Russ Chem Bull 71, 2165–2171 (2022). https://doi.org/10.1007/s11172-022-3642-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3642-8

Key words

Navigation