Skip to main content
Log in

Orientational behavior of a nematic liquid crystal and its composite with quantum dots in a microfluidic channel

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The behavior of a nematic liquid crystal (LC) and its composite with CdSe/CdS quantum dots in a microfluidic channel was studied. It is shown that the mesophase molecules can be aligned both along the microchannel axis and perpendicularly to it depending on the LC flow rate. A correlation between the average flow rate in the microchannel and aggregation of quantum dots in the composite is found, as well as the influence of the change in the average flow rate on these effects is revealed. The transition between aligned and nonaligned states is found to occur in a narrow range of flow rates of ca. 50–100 µm s−1. The revealed behavior of the studied systems makes it possible to control properties of the liquid crystal—quantum dot composites in microfluidic lab-on-a-chip devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Cuerva, M. Cano, C. Lodeiro, Chem. Rev., 2021, 121, 12966; DOI: https://doi.org/10.1021/acs.chemrev.1c00011.

    Article  CAS  PubMed  Google Scholar 

  2. A. D. Kurilov, D. N. Chausov, V. V. Osipova, R. N. Kucherov, V. V. Belyaev, Y. G. Galyametdinov, J. Mol. Liq., 2021, 339, 116747; DOI: https://doi.org/10.1016/j.molliq.2021.116747.

    Article  CAS  Google Scholar 

  3. D. V. Lapaev, V. G. Nikiforov, V. S. Lobkov, A. A. Knyazev, Y. G. Galyametdinov, J. Photochem. Photobiol. A, 2022, 427, 113821; DOI: https://doi.org/10.1016/j.jphotochem.2022.113821.

    Article  CAS  Google Scholar 

  4. N. M. Selivanova, V. V. Osipova, M. V. Strelkov, I. R. Manyurov, Y. G. Galyametdinov, Russ. Chem. Bull., 2007, 56, 56; DOI: https://doi.org/10.1007/s11172-007-0010-7.

    Article  CAS  Google Scholar 

  5. V. V. Osipova, A. D. Kurilov, Y. G. Galyametdinov, A. A. Muravskiy, S. Kumar, D. N. Chausov, Zhidkie kristally i ikh prakticheskoe ispolzovanie [Liquid Crystals and Their Practical Usage], 2020, 20, № 4, 84 (in Russian); DOI: https://doi.org/10.18083/LCAppl.2020.4.84.

    CAS  Google Scholar 

  6. L. Zhang, Q. Chen, Y. Ma, J. Sun, ACS Appl. Bio. Mat., 2020, 3, 107; DOI: https://doi.org/10.1021/acsabm.9b00853.

    Article  CAS  Google Scholar 

  7. S. Seiffert, Macromol. Chem. Phys., 2017, 218, 1600280; DOI: https://doi.org/10.1002/macp.20160028.

    Article  Google Scholar 

  8. S. Copar, M. Ravnik, S. Žumer, Crystals, 2021, 11, 956; DOI: https://doi.org/10.3390/cryst11080956.

    Article  CAS  Google Scholar 

  9. A. Sengupta, U. Tkalec, M. Ravnik, J. M. Yeomans, C. Bahr, S. Herminghaus, Phys. Rev. Lett., 2013, 110, 048303; DOI: https://doi.org/10.1103/PhysRevLett.110.048303.

    Article  PubMed  Google Scholar 

  10. Y. Takenaka, M. Škarabot, I. Muševič, Langmuir, 2020, 36, 3234; DOI: https://doi.org/10.1021/acs.langmuir.0c00101.

    Article  CAS  PubMed  Google Scholar 

  11. O. Wiese, D. Marenduzzo, O. Henrich, Soft Matter, 2016, 12, 9223; DOI: https://doi.org/10.1039/C6SM01290F.

    Article  CAS  PubMed  Google Scholar 

  12. S. Sevim, A. Sorrenti, C. Franco, S. Furukawa, S. Pané, A. J. Demello, J. Puigmartí-Luis, Chem. Soc. Rev., 2018, 47, 3788; DOI: https://doi.org/10.1039/c8cs00025e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. H. Q. Chen, X. Y. Wang, H. K. Bisoyi, L. J. Chen, Q. Li, Langmuir, 2021, 37, 3789; DOI: https://doi.org/10.1021/acs.langmuir.1c00256.

    Article  CAS  PubMed  Google Scholar 

  14. J. Deng, D. Han, J. Yang, Biosensors, 2021, 11, 385; DOI: https://doi.org/10.3390/bios11100385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. N. Bezrukov, Y. G. Galyametdinov, Russ. Chem. Bull., 2020, 69, 1436; DOI: https://doi.org/10.1007/s11172-020-2920-6.

    Article  CAS  Google Scholar 

  16. T. G. Anderson, E. Mema, L. Kondic, L. J. Cummings, Int. J. Non-Linear Mech., 2015, 75, 15; DOI: https://doi.org/10.1016/j.ijnonlinmec.2015.04.010.

    Article  Google Scholar 

  17. S. Čopar, Ž. Kos, T. Emeršič, U. Tkalec, Nat. Commun., 2020, 11, 59; DOI: https://doi.org/10.1038/s41467-019-13789-9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. M. Crespo, A. Majumdar, A. M. Ramos, I. M. Griffiths, Phys. D: Nonlinear Phenom., 2017, 351–352, 1; DOI: https://doi.org/10.1016/j.physd.2017.04.004.

    Article  Google Scholar 

  19. A. Sengupta, S. Herminghaus, C. Bahr, Liq. Cryst. Rev., 2014, 2, 73; DOI: https://doi.org/10.1080/21680396.2014.963716.

    Article  CAS  Google Scholar 

  20. A. Sengupta, U. Tkalec, C. Bahr, Soft Matter, 2011, 7, 6542; DOI: https://doi.org/10.1039/c1sm05052d.

    Article  CAS  Google Scholar 

  21. A. Sengupta, Liq. Cryst. Today, 2015, 24, 70; DOI: https://doi.org/10.1080/1358314X.2015.1039196.

    Article  Google Scholar 

  22. S. Pandey, T. Vimal, D. P. Singh, S. K. Gupta, S. Mahamuni, A. Srivastava, R. Manohar, J. Mol. Liq., 2015, 211, 157; DOI: https://doi.org/10.1016/j.molliq.2015.06.046.

    Article  CAS  Google Scholar 

  23. J. J. Amaral, J. Wan, A. L. Rodarte, C. Ferri, M. T. Quint, R. J. Pandolfi, M. Scheibner, L. S. Hirst, S. Ghosh, Soft Matter, 2015, 11, 255; DOI: https://doi.org/10.1039/c4sm02015d.

    Article  CAS  PubMed  Google Scholar 

  24. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides, Electrophoresis, 2000, 21, 27; DOI: https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C.

    Article  CAS  PubMed  Google Scholar 

  25. S. A. Jewell, S. L. Cornford, F. Yang, P. S. Cann, J. R. Sambles, Phys. Rev. E, 2009, 80, 041706; DOI: https://doi.org/10.1103/PhysRevE.80.041706.

    Article  CAS  Google Scholar 

  26. J. Bethier, P. Silberzan, Microfluidics for Biotechnology, 2nd Ed., Artech House, Norwood, 2010, 483 pp.

    Google Scholar 

Download references

Funding

The work was performed using the equipment of the Center of Collective Usage “Nanotechnologies and Nanomaterials” of the Kazan National Research Technological University. The authors are grateful to the staff of the laboratory of microscopy of the Institute of Biochemistry and Biophysics of the Kazan Scientifi c Center of the Russian Academy of Sciences for carrying out studies on a fluorescent microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Bezrukov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2092–2097, October, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezrukov, A.N., Osipova, V.V. & Galyametdinov, Y.G. Orientational behavior of a nematic liquid crystal and its composite with quantum dots in a microfluidic channel. Russ Chem Bull 71, 2092–2097 (2022). https://doi.org/10.1007/s11172-022-3631-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3631-y

Key words

Navigation