Skip to main content
Log in

Activation of the oxidation and combustion of anthracite by the copper acetate salt additive

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The influence of the method of copper acetate additive Cu(OAc)2 introduction on the characteristics of anthracite oxidation and combustion was studied. The additive containing 5 wt.% copper acetate was introduced using the methods of mechanical mixing and incipient wetness impregnation. According to the EDX-mapping data (EDX is energy dispersive X-ray spectroscopy), the incipient wetness impregnation method provides a higher degree of dispersion of the salt additive and its uniform distribution in the anthracite samples. The oxidation, ignition, and combustion parameters of the anthracite samples modified by the salt additives were studied using differential thermal analysis and high-speed video recording in a combustion chamber at a heating medium temperature of 800 °C in gas environment. The use of the copper acetate additive favors an increase in the reactivity of anthracite during combustion as evidenced by a decrease in the combustion onset temperature by 35–190 °C and ignition delay time by 2–5 s. The initial step of anthracite combustion is accompanied by the periodic formation of microexplosions. The introduction of the copper acetate additive induces an average decrease of 70% in the content of the unburnt fuel in the anthracite combustion products and an average decrease in the contents of CO and NOx by 19 and 21%, respectively. A mechanism for the activation of anthracite consumption with the copper acetate salt additive was proposed. The mechanism includes the step of copper acetate thermolysis with the formation of nonstoichiometric copper oxide CuOx, which catalyzes the further oxidation of anthracene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bouckaert, A. F. Pales, C. McGlade, U. Remme, B. Wanner, L. Varro, D. D’Ambrosio, T. Spencer, Net Zero by 2050: A Roadmap for the Global Energy Sector, International Energy Agency, France, 2021, 224 pp.; DOI: https://doi.org/10.1787/c8328405-en.

    Google Scholar 

  2. A. D. Simonov, N. A. Fedorov, Yu. V. Dubinin, N. A. Yazykov, V. A. Yakovlev, V. N. Parmon, Catal. Ind., 2013, 5, 42–49; DOI: https://doi.org/10.1134/S207005041301008X.

    Article  Google Scholar 

  3. V. N. Parmon, A. D. Simonov, V. A. Sadykov, S. F. Tikhov, Combust. Explos. Shock. Waves, 2015, 51, 143–150; DOI: https://doi.org/10.1134/S001050821502001X.

    Article  Google Scholar 

  4. Z. R. Ismagilov, M. A. Kerzhentsev, Catal. Today, 1999, 47, 339–346; DOI: https://doi.org/10.1016/S0920-5861(98)00315-0.

    Article  CAS  Google Scholar 

  5. X. Gong, Z. Guo, Z. Wang, Combust. Flame, 2010, 157, 351–356; DOI: https://doi.org/10.1016/j.combustflame.2009.06.025.

    Article  CAS  Google Scholar 

  6. X. Gong, Z. Guo, Z. Wang, Energy, 2010, 35, 506–511; DOI: https://doi.org/10.1016/j.energy.2009.10.017.

    Article  CAS  Google Scholar 

  7. H. Zhang, B. Dou, J. Li, L. Zhao, K. Wu, J. Energy Inst., 2020, 93, 2526–2535; DOI: https://doi.org/10.1016/j.joei.2020.08.012.

    Article  CAS  Google Scholar 

  8. Z. Lei, M. Liu, J. Yan, T. Chun, J. Fang, Z. Li, H. Shui, S. Ren, Z. Wang, X. Cao, Y. Kong, S. Kang, Fuel, 2021, 289, 119779; DOI: https://doi.org/10.1016/j.fuel.2020.119779.

    Article  CAS  Google Scholar 

  9. Z. Lei, J. Yan, J. Fang, H. Shui, S. Ren, Z. Wang, Z. Li, Y. Kong, S. Kang, Energy, 2021, 216, 119246; DOI: https://doi.org/10.1016/j.energy.2020.119246.

    Article  CAS  Google Scholar 

  10. V. A. Pinchuk, A. V. Kuzmin, Fuel, 2020, 267, 117220; DOI: https://doi.org/10.1016/j.fuel.2020.117220.

    Article  CAS  Google Scholar 

  11. G. W. Zhao, W. Q. Yu, Y. H. Xiao, Adv. Mat. Res., 2011, 236–238, 660–663; DOI: https://doi.org/10.4028/www.scientific.net/AMR.236-238.660.

    Google Scholar 

  12. E. Abbasi-Atibeh, A. Yozgatligil, Fuel, 2014, 115, 841–849; DOI: https://doi.org/10.1016/j.fuel.2013.01.073.

    Article  CAS  Google Scholar 

  13. X.-M. He, J. Qin, R.-Z. Liu, Z.-J. Hu, J.-G. Wang, C.-J. Huang, T.-L. Li, S.-J. Wang, Energ. Source. Part A, 2013, 35, 1233–1240; DOI: https://doi.org/10.1080/15567036.2010.516324.

    Article  CAS  Google Scholar 

  14. C. Riley, G. Canning, A. de La Riva, S. Zhou, E. Peterson, A. Boubnov, A. Hoffman, M. Tran, S. R. Bare, S. Lin, H. Guo, A. Datye, Appl. Catal. B, 2020, 264, 118547; DOI: https://doi.org/10.1016/j._pcatb.2019.118547.

    Article  Google Scholar 

  15. M. AlKetbi, K. Polychronopoulou, M. Abi Jaoude, M. A. Vasiliades, V. Sebastian, S. J. Hinder, M. A. Baker, A. F. Zedan; A. M. Efstathiou, Appl. Surf. Sci., 2020, 505, 144474; DOI: https://doi.org/10.1016/j._psusc.2019.144474.

    Article  CAS  Google Scholar 

  16. W. B. Li, J. X. Wang, H. Gong, Catal. Today, 2009, 148, 81–87; DOI: https://doi.org/10.1016/j.cattod.2009.03.007.

    Article  CAS  Google Scholar 

  17. C. Zou, J. Zhao, X. Li, R. Shi, J. Therm. Anal. Calorim., 2016, 126, 1469–1480; DOI: https://doi.org/10.1007/s10973-016-5806-y.

    Article  CAS  Google Scholar 

  18. X. Gong, S. Zhang, Energy Fuels, 2017, 31, 12867–12874; DOI: https://doi.org/10.1021/acs.energyfuels.7b02568.

    Article  CAS  Google Scholar 

  19. L. Yang, H. Luo, K. Zhang, Z. Gong, W. Wu, Meitan Xuebao/J. China Coal Soc., 2019, 44, 305–312; DOI: https://doi.org/10.13225/j.cnki.jccs.2018.1703.

    Google Scholar 

  20. A. V. Fedorov, Yu. V. Dubinin, P. M. Yeletsky, I. A. Fedorov, S. N. Shelest, V. A. Yakovlev, J. Hazard. Mater., 2021, 405, 124196; DOI: https://doi.org/10.1016/j.jhazmat.2020.124196.

    Article  CAS  PubMed  Google Scholar 

  21. S. Zhang, Z. Chen, X. Chen, X. Gong, J. Fuel Chem. Technol., 2014, 42, 166–174; DOI: https://doi.org/10.1016/S1872-5813(14)60013-X.

    Article  Google Scholar 

  22. K. Larionov, K. Slyusarskiy, S. Tsibulskiy, A. Tolokolnikov, I. Mishakov, Y. Bauman, A. Vedyagin, A. Gromov, Energies, 2020, 13, 5926; DOI: https://doi.org/10.3390/en13225926.

    Article  CAS  Google Scholar 

  23. H. W. Richardson, Copper Compounds in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Germany, 2000, 448; DOI: https://doi.org/10.1002/14356007._07_567.

    Google Scholar 

  24. I. V. Tokareva, I. V. Mishakov, A. A. Vedyagin, D. V. Korneev, E. S. Petukhova, M. E. Savvinova, Kompozit. nanostrukt. [Composite Nanostructures], 2014, 6, 158–167 (in Russian).

    CAS  Google Scholar 

  25. Y. Wu, Q. Pang, Z. He, T. Song, W. Zhan, J. Zhang, J. Iron Steel Res. Int., 2019, 26, 818–828; DOI: https://doi.org/10.1007/s42243-018-0198-9.

    Article  CAS  Google Scholar 

  26. T. Arii, Y. Masuda, Thermochim. Acta, 1999, 342, 139–146; DOI: https://doi.org/10.1016/S0040-6031(99)00294-4.

    Article  CAS  Google Scholar 

  27. C. Wang, H. Bi, X. Jiang, C. Jiang, Q. Lin, J. Energy Inst., 2020, 93, 1544–1558; DOI: https://doi.org/10.1016/j.joei.2020.01.017.

    Article  CAS  Google Scholar 

  28. K. Zhang, J. Hong, G. Cao, D. Zhan, Y. Tao, C. Cong, Thermochim. Acta, 2005, 437, 145–149; DOI: https://doi.org/10.1016/j.tca.2005.06.038.

    Article  CAS  Google Scholar 

  29. M. Liu, M. C. Lin, C. Wang, Nanoscale Res. Lett., 2011, 6, 297; DOI: https://doi.org/10.1186/1556-276X-6-297.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The change in the morphology of anthracite particle upon the addition of the combustion modifier was studied in the framework of state assignment No. 075-00268-20-02 (identifier 0718-2020-0040, theme “Complex Processing of Hydrocarbons with Formation of Hydrogen-containing Gases and Precursors of Composite Materials for Additive Production”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gromov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2085–2091, October, 2022.

No human or animal subjects were used

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromov, A.A., Ozherelkov, D.Y., Pelevin, I.A. et al. Activation of the oxidation and combustion of anthracite by the copper acetate salt additive. Russ Chem Bull 71, 2085–2091 (2022). https://doi.org/10.1007/s11172-022-3630-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3630-z

Key words

Navigation