Skip to main content
Log in

Thermodynamic parameters of complexation of sterically hindered phenols with hydrogen bond acceptor solvents: determination by 1H NMR spectroscopy

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The temperature and concentration dependences of the chemical shift of the phenolic hydroxyl proton in 2,6-diisobornyl-4-methylphenol (1) and 2,6-di-tert-butyl-4-methyl-phenol (ionol, 2) were measured by 1H NMR spectroscopy in the hydrogen bond acceptor (HBA) solvents (diethyl ether, acetone, ethyl acetate). The equilibrium constants, K, of the formation of hydrogen-bonded phenol—solvent complexes were determined and the thermodynamic parameters ΔH° and ΔS° of the complexes were calculated. It was found that the K values of 1 are higher than those of 2 by a factor of about 1.3 in diethyl ether and by a factor of 1.8 in other solvents. The enthalpies of complexation of all systems studied lie in a narrow range of −(12.9−15.5) kJ mol−1. The results of density functional theory calculations of the complex structures suggest that low K values are due to effective shielding of the OH group in 1 by the isobornyl groups. Steric hindrances force the H atom to deviate from the aromatic ring plane to form a hydrogen bond with the O atom of the HBA solvent. The torsion angle α between the C-O-H plane and the ring plane is in the range of 57–70°. Steric hindrances created by the ortho-substituents in ionol are even more pronounced (α ≈ 90°).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Yu. Chukicheva, A. V. Kutchin, Ros. khim. zhurn. [Russ. Chem. J.], 2004, 48, No. 3, 21 (in Russian).

    CAS  Google Scholar 

  2. A. F. Gogotov, I. Yu. Chukicheva, A. A. Levchuk, E. V. Buravlev, Do T’em Taj, I. I. Batura, A. V. Kutchin, Khim. rastitel’nogo syr’ya [Chem. Plant Raw Materials], 2011, No. 4, 287 (in Russian).

  3. A. V. Kutchin, A. A. Koroleva, I. V. Fedorova, O. A. Shumova, I. Yu. Chukicheva, Izv. Ufimskogo nauchnogo tsentra RAN[Proc. Ufa Scientific Centre of the RAS], 2012, No. 4, 80 (in Russian).

  4. M. B. Plotnikov, G. A. Chernysheva, V. I. Smolyakova, I. S. Ivanov, A. V. Kutchin, I. Yu. Chukicheva, E. A. Krasnov, Vestn. RAMN [Annals of the Russian Academy of Medical Sciences], 2009, No. 11, 12 (in Russian)

  5. G. A. Chernysheva, V. I. Smolyakova, M. B. Plotnikov, E. A. Yanovskaya, R. V. Gurto, V. V. Udut, I. Yu. Chukicheva, A. V. Kutchin, Eksperim. i klin. farmakologiya [Exp. Clin. Pharmacology], 2011, 74, No. 9, 20 (in Russian).

    CAS  Google Scholar 

  6. M. B. Plotnikov, V. I. Smolyakova, I. S. Ivanov, A. V. Kutchin, I. Yu. Chukicheva, E. V. Buravlev, E. A. Krasnov, Pharm. Chem. J., 2010, 44, 530; DOI: https://doi.org/10.1007/s11094-011-0511-4.

    Article  Google Scholar 

  7. L. I. Mazaletskaya, N. I. Sheludchenko, L. N. Shishkina, A. V. Kuchin, I. V. Fedorova, I. Yu. Chukicheva, Petroleum Chemistry (Engl. Transl.), 2011, 51, 348; DOI: https://doi.org/10.1134/S0965544111050100.

    CAS  Google Scholar 

  8. L. I. Mazaletskaya, N. I. Sheludchenko, L. N. Shishkina, A. V. Kutchin, I. V. Fedorova, I. Yu. Chukicheva, Russ. J. Phys. Chem. A, 2012, 86, 929; DOI: https://doi.org/10.1134/S0036024412050238.

    Article  CAS  Google Scholar 

  9. L. I. Mazaletskaya, N. I. Sheludchenko, L. N. Shishkina, E. V. Buravlev, I. Yu. Chukicheva, A. V. Kutchin, Russ. J. Phys. Chem. A, 2013, 87, 565; DOI: https://doi.org/10.1134/S0036024413040171.

    Article  CAS  Google Scholar 

  10. A. Y. Wageeh, A. R. Noorsaadah, A. Ariffin, Bee Abd H. Sharifah, A. A. Abeer, A. K. Farkaad, M. Yaeghoobi, Eur. J. Med. Chem., 2015, 101, 295; DOI: https://doi.org/10.1016/j.ejmech.2015.06.026.

    Article  Google Scholar 

  11. M. A. Polovinkina, M. N. Kolyada, V. P. Osipova, N. T. Berberova, I. Yu. Chukicheva, O. A. Shumova, A. V. Kutchin, Dokl. Chem. (Engl. Transl.), 2019, 484, 48; DOI: https://doi.org/10.1134/S001250081902006X.

    CAS  Google Scholar 

  12. E. V. Buravlev, I. V. Fedorova, O. G. Shevchenko, A. V. Kutchin, Russ. Chem. Bull., 2020, 69, 1573; DOI: https://doi.org/10.1007/s11172-020-2937-x.

    Article  CAS  Google Scholar 

  13. E. V. Buravlev, O. G. Shevchenko, A. V. Kutchin, Russ. Chem. Bull., 2021, 70, 183; DOI: https://doi.org/10.1007/s11172-021-3075-9.

    Article  CAS  Google Scholar 

  14. I. A. Dvornikova, E. V. Buravlev, O. G. Shevchenko, I. Yu. Chukicheva, A. V. Kutchin, Russ. Chem. Bull., 2021, 70, 2185; DOI: https://doi.org/10.1007/s11172-021-3330-0.

    Article  CAS  Google Scholar 

  15. E. V. Buravlev, I. Yu. Chukicheva, I. A. Dvornikova, A. V. Churakov, A. V. Kutchin, Russ. J. Org. Chem., 2012, 48, 938; DOI: https://doi.org/10.1134/S1070428012070081.

    Article  CAS  Google Scholar 

  16. A. J. Gordon, R. A. Ford. The Chemist’s Companion, New York, John Wiley and Sons, 1972, 560 pp.

    Google Scholar 

  17. F. Yu. Rachinskiy, M. F. Rachinskaya, Tekhnika laboratornykh rabot [Techniques of Laboratory Work], Khimiya, Leningrad, 1982, 432 pp. (in Russian).

    Google Scholar 

  18. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09 Rev. C.01, Wallingford, CT, 2009.

  19. A. D. Becke, J. Chem. Phys., 1993, 98, 5648; DOI: https://doi.org/10.1063/1.464913.

    Article  CAS  Google Scholar 

  20. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785; DOI: https://doi.org/10.1103/PhysRevB.37.785.

    Article  CAS  Google Scholar 

  21. A. J. H. Wachters, J. Chem. Phys., 1970, 52, 1033; DOI: https://doi.org/10.1063/1.1673095.

    Article  CAS  Google Scholar 

  22. A. D. McLean, G. S. Chandler, J. Chem. Phys., 1980, 72, 5639; DOI: https://doi.org/10.1063/1.438980.

    Article  CAS  Google Scholar 

  23. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104; DOI: https://doi.org/10.1063/1.3382344.

    Article  Google Scholar 

  24. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999; DOI: https://doi.org/10.1021/cr9904009.

    Article  CAS  Google Scholar 

  25. J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys., 1996, 104, 5497; DOI: https://doi.org/10.1063/1.471789.

    Article  CAS  Google Scholar 

  26. L. Valgimigli, K. U. Ingold, J. J. Lusztyk, J. Org. Chem., 1996, 61, 7947; DOI: https://doi.org/10.1021/jo9608578.

    Article  CAS  Google Scholar 

  27. L. Valgimigli, J. T. Banks, J. Lusztyk, K. U. Ingold, J. Org. Chem., 1999, 64, 3383; DOI: https://doi.org/10.1021/jo982360z.

    Article  Google Scholar 

  28. G. Litwinenko, E. Megie, M. Wojnicz, Org. Lett., 2002, 4, 2425; DOI: https://doi.org/10.1021/ol0261837.

    Article  Google Scholar 

  29. I. Wawer, Z. Kecki, Berichte der Bunsen-Gesellschaft, 1976, 80, 522; DOI: https://doi.org/10.1002/bbpc.19760800612.

    Article  CAS  Google Scholar 

  30. G. R. Wiley, S. I. Miller, J. Am. Chem. Soc., 1972, 94, 3287; DOI: https://doi.org/10.1021/ja00765a001.

    Article  CAS  Google Scholar 

  31. L. J. Bellamy, G. Eglinton, J. F. Morman, J. Chem. Soc., 1961, 4762; DOI: https://doi.org/10.1039/jr9610004762.

  32. C. Reichard, Solvents and Solvent Effects in Organic Chemistry, Verlag Chemie, Weinheim, 1988, 534 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. A. Sadykov or A. V. Kutchin.

Additional information

Dedicated to the Academician of the Russian Academy of Sciences V. A. Tartakovsky on the occasion of his 90th birthday.

This work was were carried out within the framework of the State Assignment to the Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences (Project No. 122031400282-9) and to the Institute of Chemistry, Komi Science Center, Ural Branch of the Russian Academy of Sciences (Project No. 1021062211116-4-1.4.1).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1856–1862, September, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadykov, R.A., Safina, G.D., Khursan, S.L. et al. Thermodynamic parameters of complexation of sterically hindered phenols with hydrogen bond acceptor solvents: determination by 1H NMR spectroscopy. Russ Chem Bull 71, 1856–1862 (2022). https://doi.org/10.1007/s11172-022-3602-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3602-3

Key words

Navigation