Skip to main content
Log in

Synthesis and nucleophilic dearomatization of highly electrophilic [1,2,5]selenadiazolo[3,4-b]pyridines

  • Brief Communications
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A number of [1,2,5]selenadiazolo[3,4-b]pyridines were synthesized on the basis of readily available 5-R-2,3-diaminopyridines. It was found that these compounds can be involved into the reactions with C-nucleophiles (1,3-dicarbonyl compounds, indoles) under mild conditions, in some cases with no base required. As a result, stable products of nucleophilic addition to the pyridine ring, 1,4-dihydropyridines fused with selenadiazole ring, were formed in up to 94% yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Y. F. Shealy, J. D. Clayton, G. J. Dixon, E. A. Dulmadge, R. F. Pittillo, D. E. Hunt, Biochem. Pharmacol., 1966, 15, 1610; DOI: https://doi.org/10.1016/0006-2952(66)90206-1.

    Article  CAS  Google Scholar 

  2. X.-C. Huang, J.-S. Zheng, T.-F. Chen, Y.-B. Zhang, Y. Luo, W.-J. Zheng, Chem. J. Chinese Univ., 2012, 33, 976; DOI: https://doi.org/10.3969/j.issn.0251-0790.2012.05.020.

    CAS  Google Scholar 

  3. O. A. Rakitin, Tetrahedron Letters, 2020, 61, 152230; DOI: https://doi.org/10.1016/j.tetlet.2020.152230.

    Article  CAS  Google Scholar 

  4. A. C. Ruberte, C. Sanmartin, C. Aydillo, A. K. Sharma, D. Plano, J. Med. Chem., 2020, 63, 1473; DOI: https://doi.org/10.1021/acs.jmedchem.9b01152.

    Article  CAS  Google Scholar 

  5. D. Plano, E. Moreno, M. Font, I. Encio, J. A. Palop, C. Sanmartin, Arch. Pharm., 2010, 343, 680; DOI: https://doi.org/10.1002/ardp.201000014.

    Article  CAS  Google Scholar 

  6. S. Deng, D. Zeng, Y. Luo, J. Zhao, X. Li, Z. Zhao, T. Chen, RSC Adv., 2017, 7, 16721; DOI: https://doi.org/10.1039/c6ra28801d.

    Article  CAS  Google Scholar 

  7. Y. Liang, Y. Zhou, S. Deng, T. Chen, ChemMedChem, 2016, 11, 1; DOI: https://doi.org/10.1002/cmdc.201600261.

    Article  Google Scholar 

  8. X. Liu, Z. Yuan, Z. Tang, Q. Chen, J. Huang, L. He, T. Chen, Biomater. Sci., 2021, 9, 4691; DOI: https://doi.org/10.1039/D1BM00348H.

    Article  CAS  Google Scholar 

  9. V. K. Sharma, S. K. Singh, RSC Adv., 2017, 7, 2682; DOI: https://doi.org/10.1039/C6RA24823C.

    Article  CAS  Google Scholar 

  10. E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem., 2014, 57, 10257; DOI: https://doi.org/10.1021/jm501100b.

    Article  CAS  Google Scholar 

  11. E. A. Knyazeva, T. N. Chmovzh, O. O. Ustimenko, G. R. Chkhetiani, I. S. Paleva, L. S. Konstantinova, L. V. Mikhal’chenko, O. A. Rakitin, Chem. Heterocycl. Comp., 2017, 53, 608; DOI https://doi.org/10.1007/s10593-017-2099-4.

    Article  CAS  Google Scholar 

  12. A. M. Strarosotnikov, D. V. Shkaev, M. A. Bastrakov, I. V. Fedyanin, S. A. Shevelev, I. L. Dalinger, Beilstein J. Org. Chem., 2017, 13, 2854; DOI: https://doi.org/10.3762/bjoc.13.277.

    Article  Google Scholar 

  13. A. M. Starosotnikov, D. V. Shkaev, M. A. Bastrakov, I. V. Fedyanin, S. A. Shevelev, I. L. Dalinger, Mendeleev Commun., 2018, 28, 638; DOI: https://doi.org/10.1016/j.mencom.2018.11.025.

    Article  CAS  Google Scholar 

  14. M. A. Bastrakov, A. K. Fedorenko, A. M. Starosotnikov, Russ. Chem. Bull., 2020, 69, 394; DOI: https://doi.org/10.1007/s11172-020-2774-y.

    Article  CAS  Google Scholar 

  15. M. A. Bastrakov, A. K. Fedorenko, A. M. Starosotnikov, I. V. Fedyanin, V. A. Kokorekin, Molecules, 2020, 25, 2194; DOI: https://doi.org/10.3390/molecules25092194.

    Article  CAS  Google Scholar 

  16. A. M. Starosotnikov, K. V. Ilkov, M. A. Bastrakov, I. V. Fedyanin, V. A. Kokorekin, Chem. Heterocycl. Compd., 2020, 56, 92; DOI: https://doi.org/10.1007/s10593-020-02628-1.

    Article  CAS  Google Scholar 

  17. A. M. Starosotnikov, M. A. Bastrakov, V. A. Kokorekin, Russ. Chem. Bull., 2022, 71, 474.

    Article  CAS  Google Scholar 

  18. V. P. Ananikov, E. A. Khokhlova, M. P. Egorov, A. M. Sakharov, S. G. Zlotin, A. V. Kucherov, L. M. Kustov, M. I. Gening, N. E. Nifantiev, Mendeleev Commun., 2015, 25, 75; DOI: https://doi.org/10.1016/j.mencom.2015.03.001.

    Article  CAS  Google Scholar 

  19. M. A. Bastrakov, A. M. Starosotnikov, A. A. Pavlov, I. L. Dalinger, S. A. Shevelev, Chem. Heterocycl. Compd., 2016, 52, 690; DOI: https://doi.org/10.1007/s10593-016-1950-3.

    Article  CAS  Google Scholar 

  20. G. H. Harts, K. B. de Roos, C. A. Salemink, Rec. Trav. Chim., 1970, 89, 5; DOI: https://doi.org/10.1002/recl.19700890102.

    Article  CAS  Google Scholar 

  21. G. Mukherjee, P. Singh, C. Ganguri, S. Sharma, H. B. Singh, N. Goel, U. P. Singh, R. J. Butcher, Inorg. Chem., 2012, 51, 8128–8140; DOI: https://doi.org/10.1021/ic3005272.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Bastrakov.

Additional information

Dedicated to the Academician of the Russian Academy of Sciences V. A. Tartakovsky on the occasion of his 90th birthday.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1826–1829, August, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, V.V., Fedorenko, A.K., Starosotnikov, A.M. et al. Synthesis and nucleophilic dearomatization of highly electrophilic [1,2,5]selenadiazolo[3,4-b]pyridines. Russ Chem Bull 71, 1826–1829 (2022). https://doi.org/10.1007/s11172-022-3596-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3596-x

Key words

Navigation