Skip to main content
Log in

Synthesis and study of interconversions of new indoline spiropyrans based on 4-hydroxy-3,5-diformylbenzoic acid

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The synthesis of new indoline spiropyran by the cyclocondensation in methanol revealed that the free aldehyde group of the target spiropyran is easily converted into the dimethyl acetal moiety without the addition of an acid catalyst, giving 8′-dimethoxymethyl-1,3,3-trimethylspiro[indoline-2,2′-2H-chromene]-5,6′-dicarboxylic acid as a single reaction product. The structure of this compound was confirmed by NMR spectroscopy and mass spectrometry. The molecular structure was also established by single-crystal X-ray diffraction. The Hirshfeld surfaces were generated and analyzed and intermolecular interactions in the crystal were investigated using the CrystalExplorer software package. The reverse hydrolysis reaction of dimethyl acetal to the aldehyde group proceeds under mild conditions in dimethyl sulfoxide, as shown by NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bouas-Laurent, H. Dürr, Pure Appl. Chem., 2001, 73, 639; DOI: https://doi.org/10.1351/pac200173040639.

    Article  CAS  Google Scholar 

  2. V. X. Truong, K. Ehrmann, M. Seifermann, P. A. Levkin, C. Barner-Kowollik, Chem. Eur. J., 2022, e202104466; DOI: https://doi.org/10.1002/chem.202104466.

  3. W. Szymanski, J. M. Beierle, H. A. Kistemaker, W. A. Velema, B. L. Feringa, Chem. Rev., 2013, 113, 6114; DOI: https://doi.org/10.1021/cr300179f.

    Article  CAS  Google Scholar 

  4. R. C. Bertelson, in Organic Photochromic and Thermochromic Compounds. Topics in Applied Chemistry, Eds J. C. Crano, R. J. Guglielmetti, Springer, Boston, MA, 2002, p. 11; DOI: https://doi.org/10.1007/0-306-46911-1_2.

  5. S. Aldoshin, in Organic Photochromic and Thermochromic Compounds. Topics in Applied Chemistry, Eds J. C. Crano, R. J. Guglielmetti, Springer, Boston, MA, 2002, p. 297; DOI: https://doi.org/10.1007/0-306-46912-X_8.

  6. A. K. Chibisov, H. Görner, J. Phys. Chem. A, 1997, 101, 4305; DOI: https://doi.org/10.1021/jp9625691.

    Article  CAS  Google Scholar 

  7. A. D. Pugachev, I. V. Ozhogin, M. B. Lukyanova, B. S. Lukyanov, A. S. Kozlenko, I. A. Rostovtseva, N. I. Makarova, V. V. Tkachev, S. M. Aldoshin, A. V. Metelitsa, J. Mol. Struct., 2021, 1229, 129615; DOI: https://doi.org/10.1016/.molstruc.2020.129615.

    Article  CAS  Google Scholar 

  8. A. S. Kozlenko, N. I. Makarova, I. V. Ozhogin, A. D. Pugachev, M. B. Lukyanova, I. A. Rostovtseva, G. S. Borodkin, N. V. Stankevich, A. V. Metelitsa, B. S. Lukyanov, Mendeleev Commun., 2021, 31, 403; DOI: https://doi.org/10.1016/j.mencom.2021.05.040.

    Article  CAS  Google Scholar 

  9. I. V. Ozhogin, V. V. Chernyavina, B. S. Lukyanov, V. I. Malay, I. A. Rostovtseva, N. I. Makarova, V. V. Tkachev, M. B. Lukyanova, A. V. Metelitsa, S. M. Aldoshin, J. Mol. Struct., 2019, 1196, 409; DOI: https://doi.org/10.1016/j.molstruc.2019.06.094.

    Article  CAS  Google Scholar 

  10. R. Klajn, Chem. Soc. Rev., 2014, 43, 148; DOI: https://doi.org/10.1039/C3CS60181A.

    Article  CAS  Google Scholar 

  11. A. D. Pugachev, E. L. Mukhanov, I. V. Ozhogin, A. S. Kozlenko, A. V. Metelitsa, B. S. Lukyanov, Chem. Heterocycl. Compd., 2021, 57, 122; DOI: https://doi.org/10.1007/s10593-021-02881-y.

    Article  CAS  Google Scholar 

  12. I. V. Ozhogin, P. V. Zolotukhin, V. V. Tkachev, A. D. Pugachev, A. S. Kozlenko, A. A. Belanova, S. M. Aldoshin, B. S. Lukyanov, Russ. Chem. Bull., 2021, 70, 1388; DOI: https://doi.org/10.1007/s11172-021-3228-x.

    Article  CAS  Google Scholar 

  13. P. Liu, X. Li, H. Zhang, W. Li, S. Li, Y. Ren., H. Shi, X Li, Prog. Org. Coat., 2022, 156, 106259; DOI: https://doi.org/10.1016/j.porgcoat.2021.106259.

    Article  Google Scholar 

  14. A. Fagan, M. Bartkowski, S. Giordani, Front. Chem., 2021, 612; DOI: https://doi.org/10.3389/fchem.2022.859450.

  15. S. Heng, X. Zhang, J. Pei, A. Adwal, P. Reineck, B. C. Gibson, M. R. Hutchinson, A. D. Abell, Eur. J. Chem., 2019, 25, 854; DOI: https://doi.org/10.1002/chem.201804816.

    Article  CAS  Google Scholar 

  16. D. B. Stubing, S. Heng, A. D. Abell, Org. Biomol. Chem., 2016, 14, 3752; DOI: https://doi.org/10.1039/C6OB00468G.

    Article  CAS  Google Scholar 

  17. S. Heng, X. Zhang, J. Pei, A. D. Albell, Biosensors, 2017, 7, 36; DOI: https://doi.org/10.3390/bios7030036.

    Article  Google Scholar 

  18. S. Wan, Y. Zheng, J. Shen, W. Yang, M. Yin, ACS Appl. Mater. Interfaces, 2014, 6, 19515; DOI: https://doi.org/10.1021/am506641t.

    Article  CAS  Google Scholar 

  19. M. J. Ferronato, D. J. Obiol, E. N. Alonso, J. A. Guevara, S. M. Grioli, M. Mascaro, M. L. Rivadulla, A. Martinez, G. Gomez, Y. Fall, M. A. Quevedo, A. C. Curino, M. M. Facchinetti, J. Steroid Biochem. Mol., 2019, 185, 185; DOI: https://doi.org/10.1016/j.jsbmb.2018.08.006.

    Article  Google Scholar 

  20. D. Dattler, G. Fuks, J. Heiser, E. Moulin, A. Perrot, X. Yao, Chem. Rev., 2020, 120, 310; DOI: https://doi.org/10.1021/acs.chemrev.9b00288.

    Article  CAS  Google Scholar 

  21. A. S. Kozlenko, A. D. Pugachev, I. V. Ozhogin, I. M. El-Sewify, B. S. Lukyanov, Chem. Heterocycl. Compd., 2021, 57, 984; DOI: https://doi.org/10.1007/s10593-021-03010-5.

    Article  CAS  Google Scholar 

  22. A. Vasilev, L. Engman, J. Org. Chem., 2000, 65, 2151; DOI: https://doi.org/10.1021/jo9917644.

    Article  CAS  Google Scholar 

  23. Z. Wu, Q. Wang, P. Li, B. Fang, M. Yin, J. Mater. Chem. C, 2021, 9, 6290; DOI: https://doi.org/10.1039/D1TC00974E.

    Article  CAS  Google Scholar 

  24. C. Jelsch, K. Ejsmontb, L. Hudera, IUCrJ., 2014, 1, 119; DOI:10.1107/S2052252514003327.

    Article  CAS  Google Scholar 

  25. M. A. Spackman, D. Jayatilaka, CrystEngComm., 2009, 11, 19; DOI: https://doi.org/10.1039/B818330A.

    Article  CAS  Google Scholar 

  26. A. D. Pugachev, V. V. Tkachev, S. M. Aldoshin, N. I. Makarova, I. A. Rostovtseva, A. V. Metelitsa, N. V. Stankevich, G. V. Shilov, B. S. Lukyanov, Russ. J. Gen. Chem., 2021, 91, 1297; DOI: https://doi.org/10.1134/S1070363221070069.

    Article  CAS  Google Scholar 

  27. A. D. Pugachev, V. V. Tkachev, I. V. Ozhogin, M. B. Lukyanova, S. M. Aldoshin, V. I. Minkin, E. L. Mukhanov, A. V. Metelitsa, N. V. Stankevich, B. S. Lukyanov, Russ. Chem. Bull., 2021, 70, 2090; DOI: https://doi.org/10.1007/s11172-021-3320-2.

    Article  CAS  Google Scholar 

  28. N. E. Gel’man, E. A. Terent’eva, T. M. Shanina, L. M. Kiparenko, Metody kolichestvennogo organicheskogo elementnogo analiza [Methods of Quantitative Organic Elemental Analysis], Khimiya, Moscow, 1987, 296 pp. (in Russian).

    Google Scholar 

  29. Y. Kadoya, M. Hata, Y. Tanaka, A. Hirohata, Y. Hitomi, M. Kodera, Inorg. Chem., 2021, 60, 5474; DOI: https://doi.org/10.1021/acs.inorgchem.0c02954.

    Article  CAS  Google Scholar 

  30. G. M. Sheldrick, SHELXTL v. 6.14, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin (USA), 2000.

    Google Scholar 

  31. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, M. A. Spackman, J. Appl. Cryst., 2021, 54, 1006; DOI: https://doi.org/10.1107/S1600576721002910.

    Article  CAS  Google Scholar 

  32. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, P. A. Wood, J. Appl. Cryst., 2020, 53, 226; DOI: https://doi.org/10.1107/S1600576719014092.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Pugachev.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. A. Tartakovsky on the occasion of his 90th birthday.

This work was carried out with the financial support from the Russian Science Foundation (Project No. 21-73-10300, https://rscf.ru/project/21-73-10300/) in the Southern Federal University. The X-ray diffraction analysis was performed by V. V. Tkachev, G. V. Shilov, and S. M. Aldoshin within the framework of the state assignment to the Institute of Problems of Chemical Physics of the Russian Academy of Sciences (No. AAAA-A19-119092390076-7).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1710–1719, August, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozhogin, I.V., Pugachev, A.D., Tkachev, V.V. et al. Synthesis and study of interconversions of new indoline spiropyrans based on 4-hydroxy-3,5-diformylbenzoic acid. Russ Chem Bull 71, 1710–1719 (2022). https://doi.org/10.1007/s11172-022-3581-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3581-4

Key words

Navigation