Skip to main content
Log in

Hydrolytic polycondensation of diethoxymethylsilane under pressure

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The process of hydrolytic polycondensation of diethoxymethylsilane in water under pressure was investigated without the use of organic solvents in non-catalytic conditions and in carbonic acid. It is demonstrated that in both cases the process of the formation of methylsiloxane polymers proceeds with 100% conversion of the monomer and complete preservation of hydrosilyl groups. The conditions for the selective production of linear products were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Sobolevskij, I. I. Skorokhodov, K. P. Grinevich, Oligoorganosiloksany. Svojstva, poluchenie, primenenie [Oligoorganosiloxanes. Properties, obtaining, application], Khimiya, Moskva, 1985, 264 pp (in Russian).

    Google Scholar 

  2. Y. Blum, D. MacQueen, Surf. Coat. Int. Part B, 2001, 84, 27–33; DOI: https://doi.org/10.1007/BF02699693.

    Article  CAS  Google Scholar 

  3. C. Dong, N. Shao, F. Yan, R. Ji, X. Wei, Z. Zhang, Available at SSRN 4055818; DOI: https://doi.org/10.2139/ssrn.4055818.

  4. P. Cerny, P. Bartos, P. Olsan, P. Spatenka, Curr. Appl. Phys., 2019, 19, 128–136; DOI: https://doi.org/10.1016/j.cap.2018.11.006.

    Article  Google Scholar 

  5. H. Liu, F. Wang, S. Lei, J. Ou, W. Li, Const. Build. Materials, 2021, 304, 124602; DOI: https://doi.org/10.1016/j.conbuildmat.2021.124602.

    Article  CAS  Google Scholar 

  6. K. Deriabin, E. Lobanovskaia, A. Novikov, R. Islamova, Org. Biomolec. Chem., 2019, 17, 5545–5549; DOI: https://doi.org/10.1039/C9OB00791A.

    Article  CAS  Google Scholar 

  7. K. Deriabin, M. Dobrynin, R. Islamova, Dalton Trans., 2020, 49, 8855–8858; DOI: https://doi.org/10.1039/D0DT01061H.

    Article  CAS  PubMed  Google Scholar 

  8. V. Khavryuchenko, I. Natkaniec, Y. Tarasenko, O. Khavryuchenko, S. Alekseev, V. Lisnyak, Mater. Chem. and Phys., 2008, 108, 24–28; DOI: https://doi.org/10.1016/j.matchemphys.2007.08.033.

    Article  CAS  Google Scholar 

  9. S. Ivanovici, C. Rill, C. Feldgitscher, G. Kickelbick, MRS Online Proceedings Library Archive, 2007, 1007; DOI: https://doi.org/10.1557/PROC-1007-S12-55.

  10. K. Kita, M. Narisawa, A. Nakahira, H. Mabuchi, M. Itoh, M. Sugimoto, M. Yoshikawa, J. Mater. Sci., 2010, 45, 139–145; DOI: https://doi.org/10.1007/s10853-009-3905-x.

    Article  CAS  Google Scholar 

  11. C. Zollfrank, R. Kladny, H. Sieber, P. Greil, J. Eur. Ceram. Soc., 2004, 24, 479–487; DOI: https://doi.org/10.1016/S0955-2219(03)00202-4.

    Article  CAS  Google Scholar 

  12. R. Kalfat, F. Babonneau, N. Gharbi, H. Zarrouk, J. Mater. Chem., 1996, 6, 1673–678; DOI: https://doi.org/10.1039/JM9960601673.

    Article  CAS  Google Scholar 

  13. M. Jankowiak, H. Maciejewski, J. Gulinski, J. Organomet. Chem., 2005, 690, 4478–4487; DOI: https://doi.org/10.1016/j.jorganchem.2005.01.033.

    Article  CAS  Google Scholar 

  14. H. Maciejewski, K. Szubert, B. Marciniec, J. Pernak, Green Chem., 2009, 11, 1045–1051.

    Article  CAS  Google Scholar 

  15. C. Sanchez, A. Lafuma, L. Rozes, K. Nakatani, J. Delaire, E. Cordoncillo, P. Escribano, Org.-Inorg. Hybr. Mater. for Photon., 1998, 3469, 192–200; DOI: https://doi.org/10.1117/12.312905.

    Article  CAS  Google Scholar 

  16. S. Rodchenko, A. Amirova, S. Milenin, A. Ryzhkov, E. Talalaeva, A. Kalinina, A. Filippov, Europ. Polym. J., 2020, 140, 110035; DOI: https://doi.org/10.1016/j.eurpolymj.2020.110035.

    Article  CAS  Google Scholar 

  17. N. A. Sheremetyeva, O. A. Serenko, E. A. Tatarinova, M. I. Buzin, F. V. Drozdov, I. V. Elmanovich, M. O. Gallyamov, A. M. Muzafarov, Russ. Chem. Bull., 2018, 67, 1440; DOI: https://doi.org/10.1007/s11172-018-2237-x.

    Article  CAS  Google Scholar 

  18. K. Boldyrev, E. Tatarinova, I. Meshkov, N. Vasilenko, M. Buzin, R. Novikov, A. Muzafarov, Polym., 2019, 174, 159–169; DOI: https://doi.org/10.1016/j.polymer.2019.04.030.

    Article  CAS  Google Scholar 

  19. J. Chruściel, React. Funct. Polym. Vol. One, 2020, 329–414; DOI: https://doi.org/10.1007/978-3-030-43403-8_14.

  20. R. Hofmann, M. Vlatković, F. Wiesbrock, Polym., 2017, 9, 534; DOI: https://doi.org/10.3390/polym9100534.

    Article  Google Scholar 

  21. K. Kuciński, H. Stachowiak-Dłużyńska, G. Hreczycho, Coord. Chem. Rev., 2022, 459, 214456; DOI: https://doi.org/10.1016/j.ccr.2022.214456.

    Article  Google Scholar 

  22. R. Corbin, E. Ison, M. Abu-Omar, Dalt. Trans., 2009, 15, 2850–2855; DOI: https://doi.org/10.1039/B822783G.

    Article  Google Scholar 

  23. A. Arzumanyan, I. Goncharova, R. Novikov, S. Milenin, K. Boldyrev, P. Solyev, A. Muzafarov, Green Chem., 2018, 20, 1467–1471; DOI: https://doi.org/10.1039/C8GC00424B.

    Article  CAS  Google Scholar 

  24. I. Goncharova, R. Tukhvatshin, D. Kholodkov, R. Novikov, V. Solodilov, A. Arzumanyan, Macromol. Rapid Comm., 2021, 42, 2000645; DOI: https://doi.org/10.1002/marc.202000645.

    Article  CAS  Google Scholar 

  25. E. Belov, G. Dubrovskaya, N. Efimov, S. Kleshcevnikova, E. Korobkov, E. Lebedev, Organosil. Chem. Set.: From Molec. Mater., 2005, 518–521; DOI: https://doi.org/10.1002/9783527620777.ch83d.

  26. B. A. Trofimov, L. N. Parshina, L. A. Oparina, Dokl. Chem., 2001, 377, 112–113.

    Article  Google Scholar 

  27. M. Handke, B. Handke, A. Kowalewska, W. Jastrzębski, J. Molec. Struct., 2009, 924–926, 254–263; DOI: https://doi.org/10.1016/j.molstruc.2008.11.039.

    Article  Google Scholar 

  28. J. Chojnowski, W. Fortuniak, J. Kurjata, S. Rubinsztajn, J. Cella, Macromol., 2006, 39, 3802–3807; DOI: https://doi.org/10.1021/ma060080c.

    Article  CAS  Google Scholar 

  29. K. Kuciński, H. Stachowiak, G. Hreczycho, Inorg. Chem. Front., 2020, 7, 4190–4196; DOI: https://doi.org/10.1039/D0QI00904K.

    Article  Google Scholar 

  30. V. Hamciuc, L. Pricop, M. Marcu, C. Ionescu, L. Sacarescu, D. Simona Pricop, J. Macromol. Sci. Pure Appl. Chem., 1998, 35, 1957–1970; DOI: https://doi.org/10.1080/10601329808000990.

    Article  Google Scholar 

  31. B. Hardman, A. Torkelson, Silicones, Encyclopedia Pol. Sci. Engineering, Second Edition, J. Wiley & Sons, New York, 1989, 15, 271–289.

    Google Scholar 

  32. R. D. C. Richards, J. Hollinghurst, J.A. Semlyen, Polym., 1993, 34, 4965; DOI: 10.10-9416/0032-3861(93)90027-8.

    Article  CAS  Google Scholar 

  33. K. Andrianov, L. Gavrikova, Ye. Rodionova, Polym. Sci., USSR, 1971, 13, 1057–10614; DOI: https://doi.org/10.1016/0032-3950(71)90309-1.

    Article  Google Scholar 

  34. K. Andrianov, I. Abkhazava, L. Khanananshvili, Sh. Barabadze, Zh. obch. khimii, 1974, 44, 1922–1925 [J. Gen. Chem. USSR, 1974, 44] (in Russian).

    CAS  Google Scholar 

  35. Y. Zhang, Z. Zhang, Q. Wang, Z. Xie, J. Appl. Polym. Sc., 2007, 103, 153; DOI: https://doi.org/10.1002/app.25021.

    Article  CAS  Google Scholar 

  36. E. Talalaeva, A. Kalinina, N. Vasilenko, N. Demchenko, G. Cherkaev, A. Goloveshkin, A. Muzafarov, J. Organomet. Chem., 2020, 906, 121050; DOI: https://doi.org/10.1016/j.jorganchem.2019.121050.

    Article  CAS  Google Scholar 

  37. S. Rodchenko, A. Amirova, S. Milenin, A. Ryzhkov, E. Talalaeva, A. Kalinina, A. Filippov, Europ. Polym. J., 2020, 140, 110035; DOI: https://doi.org/10.1016/j.eurpolymj.2020.110035.

    Article  CAS  Google Scholar 

  38. E. Talalaeva, A. Kalinina, E. Chernov, A. Khmelnitskaia, M. Obrezkova, G. Cherkaev, A. Muzafarov, Polym., 2021, 14, 28; DOI: https://doi.org/10.3390/polym14010028.

    Article  Google Scholar 

  39. N. N. Makarova, T. V. Astapova, B. D. Lavrukhin, Russ. Chem. Bull., 1996, 45, 914–919; DOI: https://doi.org/10.1007/BF01431324.

    Article  Google Scholar 

  40. M. Unno, R. Tanaka, Silanols and Silsesquioxanes. In Efficient Methods for Preparing Silicon Compounds Academic Press: Cambridge, MA, USA, 2016, 399–440.

    Chapter  Google Scholar 

  41. R. Richards, J. Hollinghurst, J. Semlyen, Polym., 1993, 34, 4965; DOI: https://doi.org/10.1016/0032-3861(93)90027-8.

    Article  CAS  Google Scholar 

  42. V. O. Reikhsfeld, A. G. Ivanova, Vysokomol. Soed., 1962, 4, 30–36 [Polym. Sci., USSR, 1962, 4] (in Russian).

    CAS  Google Scholar 

  43. R. Harris, B. Kimber, J. Organomet. Chem., 1974, 70, 43; DOI: https://doi.org/10.1016/S0022-328X(00)88243-1.

    Article  CAS  Google Scholar 

  44. J. Crivello, J. Lee, D. Conlon, A New Free Radical Approach to the Synthesis of Polydimethylsiloxane-vinyl Monomer Block Polymers, Advances in Elastomers and Rubber Elasticity, J. Lal, J. E. Mark (Eds.), Plenum Press, New York & London, 1986, 157–183.

  45. V. V. Gorodov, N. V. Demchenko, M. I. Buzin, D. I. Shragin, V. S. Papkov, A. M. Muzafarov, Russ. Chem. Bull., 2017, 66, 1290–1299; DOI: https://doi.org/10.1007/s11172-017-1887-4.

    Article  CAS  Google Scholar 

  46. S. Milenin, F. Drozdov, K. Bezlepkina, V. Majorov, A. Muzafarov, Macromol., 2021, 54, 2921–2935; DOI: https://doi.org/10.1021/acs.macromol.0c02790.

    Article  CAS  Google Scholar 

  47. A. Issa, A. Luyt, Polym., 2019, 11, 537; DOI: https://doi.org/10.3390/polym11030537.

    Article  Google Scholar 

  48. P. V. Ivanov, N. G. Mazhorova, Russ. Chem. Bull., 2020, 69, 1061–1071; DOI: https://doi.org/10.1007/s11172-020-2867-7.

    Article  CAS  Google Scholar 

  49. N. Yakhontov, O. Gorbatsevich, A. Kalinina, N. Demchenko, V. Kazakova, A. Muzafarov, Mend. Comm., 2020, 30, 336–338; DOI: https://doi.org/10.1016/j.mencom.2020.05.025.

    Article  CAS  Google Scholar 

  50. A. Ivanov, V. Kopylov, V. Kireev, R. Borisov, K. Gerasimov, Y. Bilichenko, Pol. Sci. Ser. B, 2015, 57, 9–15; DOI: https://doi.org/10.1134/S1560090415010078.

    Article  CAS  Google Scholar 

  51. A. A. Kalinina, E. V. Talalaeva, A. I. Demchenko, N. G. Vasilenko, Y. A. Molodtsova, N. V. Demchenko, A. M. Muzafarov, Russ. Chem. Bull., 2016, 65, 1013–1019; DOI: https://doi.org/10.1007/s11172-016-1405-0.

    Article  CAS  Google Scholar 

  52. A. A. Kalinina, D. N. Kholodkov, I. B. Meshkov, M. A. Pigaleva, I. V. Elmanovich, Ya. A. Molodtsova, M. O. Gallyamov, A. M. Muzafarov, Russ. Chem. Bull., 2016, 65, 1104–1109.

    Article  CAS  Google Scholar 

  53. A. A. Kalinina, A. S. Zhiltsov, M. A. Pigaleva, I. V. Elmanovich, Yu. A. Molodtsova, V. M. Kotov, A. M. Muzafarov, Russ. Chem. Bull., 2017, 66, 355–361; DOI: https://doi.org/10.1007/s11172-017-1740-9.

    Article  CAS  Google Scholar 

  54. A. Kalinina, I. Elmanovich, M. Temnikov, M. Pigaleva, A. Zhiltsov, M. Gallyamov, A. Muzafarov, RSC Adv., 2014, 5, 5664–5666; DOI: https://doi.org/10.1039/C4RA13619E.

    Article  Google Scholar 

  55. V. A. Vasnev, B. A. Izmaylov, V. V. Istratov, G. D. Markova, O. V. Baranov, Russ. Chem. Bull., 2021, 70, 1471–1473; DOI: https://doi.org/10.1007/s11172-021-3241-0.

    Article  CAS  Google Scholar 

  56. O. V. Baranov, L. G. Komarova, S. S. Golubkov, Russ. Chem. Bull., 2020, 69, 1165–1168; DOI: https://doi.org/10.1007/s11172-020-2884-6.

    Article  CAS  Google Scholar 

  57. P. V. Ivanov, N. Γ. Mazhorova, Russ. Chem. Bull., 2020, 69, 1061–1071; DOI: https://doi.org/10.1007/s11172-020-2867-7.

    Article  CAS  Google Scholar 

  58. T. Ogawa, J. Watanabe, Y. Oshima, J. Supercrit. Fl., 2008, 45, 80–87; DOI: https://doi.org/10.1016/j.supflu.2007.11.010.

    Article  CAS  Google Scholar 

  59. S. A. Milenin, A. A. Kalinina, N. V. Demchenko, N. G. Vasilenko, A. M. Muzafarov, Russ. Chem. Bull., 2013, 62, 705–709; DOI: https://doi.org/10.1007/s11172-013-0096-z.

    Article  CAS  Google Scholar 

  60. L. F. Armaredo, D. D. Perkin, Purification of Laboratory Chemicals, Butterworth Heinemann, Oxford, 2002, p. 530.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kalinina.

Additional information

Dedicated to Academician of the Russian Academy of Science V. A. Tartakovsky on the occasion of his 90th birthday.

This work was supported by the Russian Science Foundation (Project No. 21-73-30030). The study of the molecular weight characteristics of the products, the registration of 1H NMR and IR spectra were carried out with the support of the Ministry of Science and Higher Education of the Russian Federation using scientific equipment of the Center for Collective Use “Polymer Research Center” of Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences (FFSM-2021-0004).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1648–1655, August, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, A.A., Pryakhina, T.A., Talalaeva, E.V. et al. Hydrolytic polycondensation of diethoxymethylsilane under pressure. Russ Chem Bull 71, 1648–1655 (2022). https://doi.org/10.1007/s11172-022-3574-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3574-3

Key words

Navigation