Skip to main content
Log in

Experimental enthalpies of formation and other physicochemical characteristics of compounds containing C-NO2 and C-N(O)=N-NO2 groups: a comparison

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The standard enthalpies of formation of nitro-NNO-azoxy compounds including nitro-NNO-azoxybenzene (2), 3-nitro-4-{[4-(nitro-NNO-azoxy)furazan-3-yl]-NNO-azoxy}-furazan (4), and bis-4,4′-(nitro-NNO-azoxy)-3,3′-azofurazan (6), as well as those of nitro compounds including 3-nitro-4-[(4-nitrofurazan-3-yl)-NNO-azoxy]furazan (3) and 4,4′-dinitro-3,3′-azofurazan (5) were determined by combustion calorimetry. It was shown that replacement of nitro group by nitro-NNO-azoxy group in the benzene and furazan rings causes the enthalpies of formation of the nitro-NNO-azoxy compounds to increase by 49–57 kcal mol−1 (on the average, by 52 kcal mol−1 per nitro-NNO-azoxy group introduced). According to the detonation velocity and detonation pressure calculations for compounds 3–6, the energetic characteristics of nitro-NNO-azoxyfurazans 4 and 6 approach those of hexanitrohexaazaisowurtzitane (CL-20), being much better than those of nitrofurazans 3 and 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. T. O’Sullivan, M. J. Zdilla, Chem. Rev., 2020, 120, 5682; DOI: https://doi.org/10.1021/acs.chemrev.9b00804.

    Article  PubMed  Google Scholar 

  2. S. G. Zlotin, A. M. Churakov, M. P. Egorov, L. L. Fershtat, M. S. Klenov, I. V. Kuchurov, N. N. Makhova, G. A. Smirnov, Yu. V. Tomilov, V. A. Tartakovsky, Mendeleev Commun., 2021, 31, 731; DOI: https://doi.org/10.1016/j.mencom.2021.11.001.

    Article  CAS  Google Scholar 

  3. H. Gao, Q. Zhang, J. M. Shreeve, J. Mater. Chem. A, 2020, 8, 4193; DOI: https://doi.org/10.1039/C9TA12704F.

    Article  CAS  Google Scholar 

  4. S. G. Zlotin, I. L. Dalinger, N. N. Makhova, V. A. Tartakovsky, Russ. Chem. Rev., 2020, 89, 1; DOI: https://doi.org/10.1070/RCR4908.

    Article  CAS  Google Scholar 

  5. D. E. Chavez, Top. Heterocycl. Chem., 2017, 1; DOI: https://doi.org/10.1007/7081_2017_5.

  6. N. E. Leonov, S. E. Semenov, M. S. Klenov, A. M. Churakov, Yu. A. Strelenko, A. N. Pivkina, I. V. Fedyanin, D. B. Lempert, T. S. Kon’kova, Yu. N. Matyushin, V. A. Tartakovsky, Mendeleev Commun., 2021, 31, 789; DOI: https://doi.org/10.1016/j.mencom.2021.11.006.

    Article  CAS  Google Scholar 

  7. N. E. Leonov, M. S. Klenov, O. V. Anikin, A. M. Churakov, Y. A. Strelenko, A. A. Voronin, D. B. Lempert, N. V. Muravyev, I. V. Fedyanin, S. E. Semenov, V. A. Tartakovsky, ChemistrySelect, 2020, 5, 12243; DOI: https://doi.org/10.1002/slct.202003182.

    Article  CAS  Google Scholar 

  8. N. E. Leonov, F. M. Sidorov, M. S. Klenov, A. M. Churakov, Yu. A. Strelenko, A. N. Pivkina, I. V. Fedyanin, D. B. Lempert, T. S. Kon’kova, Yu. N. Matyushin, E. A. Miroshnichenko, V. A. Tartakovsky, Mendeleev Commun., 2021, 31, 792; DOI: https://doi.org/10.1016/j.mencom.2021.11.007.

    Article  CAS  Google Scholar 

  9. O. A. Luk’yanov, V. V. Parakhin, Russ. Chem. Bull., 2012, 61, 1582; DOI: https://doi.org/10.1007/s11172-012-0210-7.

    Article  Google Scholar 

  10. T. V. Ternikova, G. V. Pokhvisneva, O. A. Luk’yanov, Russ. Chem. Bull., 2020, 69, 2349; DOI: https://doi.org/10.1007/s11172-020-3031-0.

    Article  CAS  Google Scholar 

  11. G. A. Smirnov, O. A. Luk’yanov, Russ. Chem. Bull., 2020, 69, 295; DOI: https://doi.org/10.1007/s11172-020-2759-x.

    Article  CAS  Google Scholar 

  12. I. N. Zyuzin, Russ. Chem. Bull., 2020, 69, 1949; DOI: https://doi.org/10.1007/s11172-020-2984-3.

    Article  CAS  Google Scholar 

  13. D. A. Gulyaev, M. S. Klenov, A. M. Churakov, Y. A. Strelenko, I. V. Fedyanin, D. B. Lempert, N. V. Muravyev, T. S. Kon’kova, Y. N. Matyushin, V. A. Tartakovsky, RSC Advances, 2021, 11, 24013; DOI: https://doi.org/10.1039/D1RA03919A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D. A. Gulyaev, M. S. Klenov, A. M. Churakov, Yu. A. Strelenko, A. N. Pivkina, V. A. Tartakovsky, Russ. Chem. Bull., 2021, 70, 1599; DOI: https://doi.org/10.1007/s11172-021-3256-6.

    Article  CAS  Google Scholar 

  15. Patent RU 2756321, Inventor’s Bull., No. 28, 2021; date of publication 29.09.2021.

  16. A. A. Konnov, I. M. Dubrovin, M. S. Klenov, O. V. Anikin, A. M. Churakov, Yu. A. Strelenko, A. N. Pivkina, V. A. Tartakovsky, Russ. Chem. Bull., 2021, 70, 2189; DOI: https://doi.org/10.1007/s11172-021-3331-z.

    Article  CAS  Google Scholar 

  17. A. O. Dmitrienko, A. A. Konnov, M. S. Klenov, Powder Diffr, 2021, 36, 134; DOI: https://doi.org/10.1017/S0885715621000208.

    Article  CAS  Google Scholar 

  18. A. O. Dmitrienko, A. A. Konnov, M. S. Klenov, Powder Diffr, 2021, 36, 176; DOI: https://doi.org/10.1017/S0885715621000233.

    Article  CAS  Google Scholar 

  19. Y. Wang, S. Li, Y. Li, R. Zhang, D. Wang, S. Pang, J. Mater. Chem. A, 2014, 2, 20806; DOI: https://doi.org/10.1039/C4TA04716H.

    Article  CAS  Google Scholar 

  20. A. M. Churakov, S. L. Ioffe, V. A. Tartakovsky, Mendeleev Commun., 1996, 6, 20; DOI: https://doi.org/10.1070/MC1996v006n01ABEH000560.

    Article  Google Scholar 

  21. A. M. Churakov, S. E. Semenov, S. L. Ioffe, Y. A. Strelenko, V. A. Tartakovsky, Russ. Chem. Bull., 1997, 46, 1042; DOI: https://doi.org/10.1007/BF02496149.

    Article  CAS  Google Scholar 

  22. N. E. Leonov, M. S. Klenov, O. V. Anikin, A. M. Churakov, Yu. A. Strelenko, K. A. Monogarov, V. A. Tartakovsky, Eur. J. Org. Chem., 2019, 1, 91; DOI: https://doi.org/10.1002/ejoc.201801533.

    Article  Google Scholar 

  23. A. B. Sheremetev, S. E. Semenov, V. S. Kuzmin, Y. A. Strelenko, S. L. Ioffe, Chem. Eur. J., 1998, 4, 1023; DOI: https://doi.org/10.1002/(SICI)1521-3765(19980615)4:6<1023::AID-CHEM1023>3.0.CO;2-R.

    Article  CAS  Google Scholar 

  24. H. Li, B. Z. Wang, X. Z. Li, J. F. Tong, W. P. Lai, X. Z. Fan, Bull. Korean Chem. Soc., 2013, 34, 686; DOI: https://doi.org/10.5012/bkcs.2013.34.2.686.

    Article  CAS  Google Scholar 

  25. H. Li, F. Q. Zhao, Q. Q. Yu, W. P. Lai, B. Z. Wang, Chin. J. Energ. Mater., 2014, 22, 880; DOI: https://doi.org/10.11943/j.issn.1006-9941.2014.06.032.

    CAS  Google Scholar 

  26. O. V. Anikin, N. E. Leonov, M. S. Klenov, A. M. Churakov, A. A. Voronin, A. A. Guskov, N. V. Muravyev, Yu. A. Strelenko, I. V. Fedyanin, V. A. Tartakovsky, Eur. J. Org. Chem., 2019, 26, 4189; DOI: https://doi.org/10.1002/ejoc.201900314.

    Article  Google Scholar 

  27. M. S. Klenov, N. E. Leonov, A. A. Guskov, A. M. Churakov, Yu. A. Strelenko, V. A. Tartakovsky, Russ. Chem. Bull., 2019, 68, 1798; DOI: https://doi.org/10.1007/s11172-019-2628-7.

    Article  CAS  Google Scholar 

  28. W. P. Lai, P. Lian, Y. Z. Liu, T. Yu, W. L. Zhu, Z. X. Ge, J. Lv, J. Mol. Model., 2014, 20, 2479; DOI: https://doi.org/10.1007/s00894-014-2479-y.

    Article  PubMed  Google Scholar 

  29. P. Lian, W. P. Lai, Z. X. Ge, B. Z. Wang, X. J. Wang, Chinese J. Explos. Propel., 2014, 37, 50; DOI: 1007-7812(2014)04-0050-04.

    CAS  Google Scholar 

  30. A. Gunasekaran, M. L. Trudell, J. H. Boyer, Heteroat. Chem., 1994, 5, 441; DOI: https://doi.org/10.1002/hc.520050505.

    Article  CAS  Google Scholar 

  31. A. K. Zelenin, M. L. Trudell, R. D. Gilardi, J. Heterocycl. Chem., 1998, 35, 151; DOI: https://doi.org/10.1002/jhet.5570350128.

    Article  CAS  Google Scholar 

  32. CODATA Key Values for Thermodynamics. Final Report of the CODATA. Task Group on Key Values for Thermodynamics, Eds J. D. Cox, D. D. Wagman, V. A. Medvedev, Hemisphere Publishing Corporation, New York—Washington—Philadelphia-London, 1989.

    Google Scholar 

  33. M. A. Suntsova, O. V. Dorofeeva, J. Chem. Eng. Data, 2016, 61, 313; DOI: https://doi.org/10.1021/acs.jced.5b00558.

    Article  CAS  Google Scholar 

  34. A. B. Sheremetev, V. O. Kulagina, N. S. Aleksandrova, D. E. Dmitriev, Yu. A. Strelenko, V. P. Lebedev, Yu. N. Matyushin, Propellants, Explos., Pyrotech., 1998, 23, 142; DOI: https://doi.org/10.1002/(SICI)1521-4087(199806)23:3<142::AID-PREP142>3.0.CO;2-X.

    Article  CAS  Google Scholar 

  35. N. V. Muravyev, D. B. Meerov, K. A. Monogarov, I. N. Melnikov, E. K. Kosareva, L. L. Fershtat, A. B. Sheremetev, I. L. Dalinger, I. V. Fomenkov, A. N. Pivkina, Chem. Eng. J., 2021, 421, 129804; DOI: https://doi.org/10.1016/j.cej.2021.129804.

    Article  CAS  Google Scholar 

  36. O. A. Luk’yanov, V. V. Parakhin, N. I. Shlykova, A. O. Dmitrienko, E. K. Melnikova, T. S. Kon’kova, K. A. Monogarov, D. B. Meerov, New J. Chem., 2020, 44, 8357; DOI: https://doi.org/10.1039/d0nj01453b.

    Article  Google Scholar 

  37. A. A. Larin, D. M. Bystrov, L. L. Fershtat, A. A. Konnov, N. N. Makhova, K. A. Monogarov, D. B. Meerov, I. N. Melnikov, A. N. Pivkina, V. G. Kiselev, N. V. Muravyev, Molecules, 2020, 25, 5836; DOI: https://doi.org/10.3390/molecules25245836.

    Article  CAS  PubMed Central  Google Scholar 

  38. V. I. Pepekin, Yu. N. Matyushin, T. V. Gubina, Russ. J. Phys. Chem. B, 2011, 5, 97; DOI: https://doi.org/10.1134/S1990793111020102.

    Article  CAS  Google Scholar 

  39. N. V. Muravyev, D. R. Wozniak, D. G. Piercey, J. Mater. Chem. A, 2022, 10, 11054; DOI: https://doi.org/10.1039/D2TA01339H.

    Article  CAS  Google Scholar 

  40. Standardization Agreement 4489 (STANAG 4489), Explosives, IS Tests, NATO, Brussels, 1999.

  41. Standardization Agreement 4487 (STANAG 4487), Explosives, Impact Sensitivity Tests, NATO, Brussels, 2002.

  42. Ya. O. Inozemtsev, A. B. Vorobyev, A. V. Inozemtsev, Yu. N. Matyushin, Combustion and Explosion, 2014, 7, 260 (in Russian).

    Google Scholar 

  43. T. S. Kon’kova, Yu. N. Matyushin, E. A. Miroshnichenko, A. B. Vorob’ev, Russ. Chem. Bull., 2009, 58, 2020; DOI: https://doi.org/10.1007/s11172-009-0276-z.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Klenov.

Additional information

This work was financially supported by the Ministry of Higher Education and Science of the Russian Federation (Contract No. 075-15-2020-803 with the N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izyestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1634–1640, August, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonov, N.E., Klenov, M.S., Churakov, A.M. et al. Experimental enthalpies of formation and other physicochemical characteristics of compounds containing C-NO2 and C-N(O)=N-NO2 groups: a comparison. Russ Chem Bull 71, 1634–1640 (2022). https://doi.org/10.1007/s11172-022-3572-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3572-5

Key words

Navigation