Skip to main content
Log in

Borane reduction of carbon dioxide bound to diimine-supported aluminum hydrides

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The borane reduction of carbon dioxide bound to aluminum hydrides supported by redox-active acenaphthene-1,2-diimine ligands, [{(dpp-bian)AlO2CH2}2] (1) (dpp-bian is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) and [(ArBIG-bian)Al(μ-OC(H)O)2-Li(thf)2] (2) (ArBIG-bian is 1,2-bis[(2,6-dibenzhydryl-4-methylphenyl)imino]acenaph-thene), was explored. The reaction of 1 with dimethylaminoborane (1:2) in toluene gives the paramagnetic methoxy-containing aluminum complex [{(dpp-bian)Al(OMe)}2(μ-O)] (3), whereas 2 is inert toward BH3 • NHMe2, but the reduction of 2 with pinacolborane HBpin (1:4) affords the mixed derivative [(ArBIG-bian)Al(OCH3)(OBpin)Li(thf)2] (4). Compounds 3 and 4 were characterized by elemental analysis, EPR and NMR spectroscopy, IR spectroscopy, and X-ray diffraction. The energy parameters of the reaction of 1 with dimethylaminoborane were evaluated and the paramagnetic electronic ground state of molecule 3 was confirmed by quantum chemical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.-H. Wang, X. Feng, M. Bao, Transformation of Carbon Dioxide to Formic Acid and Methanol. SpringerBriefs in Molecular Science, Springer Nature, Switzerland, 2018, 128 pp.; DOI: https://doi.org/10.1007/978-981-10-3250-9.

    Book  Google Scholar 

  2. W.-H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck, E. Fujita, Chem. Rev., 2015, 115, 23, 12936; DOI: https://doi.org/10.1021/acs.chemrev.5b00197.

    Google Scholar 

  3. F. G. Fontaine, M. A. Courtemanche, M. A. Légaré, Chem. Eur. J., 2014, 20, 2990; DOI: https://doi.org/10.1002/chem.201304376.

    Article  CAS  Google Scholar 

  4. F.-G. Fontaine, D. W. Stephan, Curr. Opin. Green. Sustain. Chem., 2017, 3, 28; DOI: https://doi.org/10.1016/j.cogsc.2016.11.0045.

    Article  Google Scholar 

  5. A. Jana, D. Ghoshal, H. W. Roesky, I. Objartel, G. Schwab, D. Stalke, J. Am. Chem. Soc., 2009, 131, 1288; DOI: https://doi.org/10.1021/ja808656t.

    Article  CAS  Google Scholar 

  6. G. Tan, W. Wang, B. Bloma, M. Driess, Dalton Trans., 2014, 43, 6006; DOI: https://doi.org/10.1039/c3dt53321b.

    Article  CAS  Google Scholar 

  7. A. Jana, G. Tavčar, H. W. Roesky, M. John, Dalton Trans., 2010, 39, 9487; DOI: https://doi.org/10.1039/c0dt00921k.

    Article  CAS  Google Scholar 

  8. T. J. Hadlington, C. E. Kefalidis, L. Maron, C. Jones, ACS Catal., 2017, 7, 1853; DOI: https://doi.org/10.1021/acscatal.6b03306.

    Article  CAS  Google Scholar 

  9. J. A. B. Abdalla, I. M. Riddlestone, R. Tirfoin, S. Aldridge, Angew. Chem. Int. Ed. 2015, 54, 5098; DOI: https://doi.org/10.1002/anie.201500570.

    Article  CAS  Google Scholar 

  10. A. Caise, J. Hicks, M. Ángeles Fuentes, J. M. Goicoechea, S. Aldridge, Chem. Eur. J., 2021, 27, 2138; DOI: https://doi.org/10.1002/chem.202004408.

    Article  CAS  Google Scholar 

  11. C.-C. Chia, Y.-C. Teo, N. Cham, S. Ying-Fu Ho, Z.-H. Ng, H.-M. Toh, N. Mézailles, C.-W. So, Inorg. Chem., 2021, 60, 4569; DOI: https://doi.org/10.1021/acs.inorgchem.0c03507.

    Article  CAS  Google Scholar 

  12. D. Franz, C. Jandl, C. Stark, S. Inoue, Chem. Cat. Chem., 2019, 11, 5275; DOI: https://doi.org/10.1002/cctc.201901255.

    CAS  PubMed  Google Scholar 

  13. C. Weetman, P. Bag, T. Szilvási, C. Jandl, S. Inoue, Angew. Chem., Int. Ed., 2019, 58, 10961; DOI: https://doi.org/10.1002/anie.201905045.

    Article  CAS  Google Scholar 

  14. M. D. Anker, M. Arrowsmith, P. Bellham, M. S. Hill, G. Kociok-Köhn, D. J. Liptrot, M. F. Mahon, C. Weetman, Chem. Sci., 2014, 5, 2826; DOI: https://doi.org/10.1039/c4sc00885e.

    Article  CAS  Google Scholar 

  15. R. Zhang, Y. Wang, Y. Zhao, C. Redshaw, I. L. Fedushkin, B. Wu, X.-J. Yang, Dalton Trans., 2021, 50, 13634; DOI: https://doi.org/10.1039/d1dt02120f.

    Article  CAS  Google Scholar 

  16. M. V. Moskalev, A. A. Skatova, D. A. Razborov, A. A. Bazanov, N. L. Bazyakina, V. G. Sokolov, I. L. Fedushkin, Eur. J. Inorg. Chem., 2021, 1890; DOI: https://doi.org/10.1002/ejic.202100179.

  17. M. V. Moskalev, V. G. Sokolov, T. S. Koptseva, A. A. Skatova, A. A. Bazanov, E. V. Baranov, I. L. Fedushkin, J. Organomet. Chem., 2021, 949, 121972; DOI: https://doi.org/10.1016/j.jorganchem.2021.121972.

    Article  CAS  Google Scholar 

  18. T. S. Koptseva, M. V. Moskalev, A. A. Skatova, R. V. Rumyantcev, I. L. Fedushkin, Inorg. Chem., 2022, 61, 206; DOI: https://doi.org/10.1021/acs.inorgchem.1c02731.

    Article  CAS  Google Scholar 

  19. T. S. Koptseva, V. G. Sokolov, S. Yu. Ketkov, E. A. Rychagova, A. V. Cherkasov, A. A. Skatova, I. L. Fedushkin, Chem. Eur. J., 2021, 27, 5745; DOI: https://doi.org/10.1002/chem.202004991.

    Article  CAS  Google Scholar 

  20. V. A. Dodonov, O. A. Kushnerova, E. V. Baranov, A. S. Novikov, I. L. Fedushkin, Dalton Trans., 2021, 50, 8899; DOI: https://doi.org/10.1039/d1dt01199e.

    Article  CAS  Google Scholar 

  21. A. B. Rahane, M. D. Deshpande, V. Kumar, J. Phys. Chem. C, 2011, 115, 18111; DOI: https://doi.org/10.1021/jp2050614.

    Article  CAS  Google Scholar 

  22. C. A. Jaska, T. J. Clark, S. B. Clendenning, D. Grozea, A. Turak, Zh.-Hong Lu, I. Manners, J. Am. Chem. Soc., 2005, 127(14), 5116; DOI: https://doi.org/10.1021/ja0447412.

    Article  CAS  Google Scholar 

  23. O. Jacquet, X. Frogneux, C. Das Neves Gomes, T. Cantat, Chem. Sci., 2013, 4, 2127; DOI: https://doi.org/10.1039/C3SC22240C.

    Article  CAS  Google Scholar 

  24. Y. Li, X. Fang, K. Junge, M. Beller, Angew. Chem., Int. Ed., 2013, 52, 9568; DOI: https://doi.org/10.1002/anie.201301349.

    Article  CAS  Google Scholar 

  25. E. Blondiaux, J. Pouessel, T. Cantat, Angew. Chem., Int. Ed., 2014, 53, 12186; DOI: https://doi.org/10.1002/anie.201407357.

    Article  CAS  Google Scholar 

  26. M. V. Moskalev, D. A. Razborov, A. A. Bazanov, V. G. Sokolov, T. S. Koptseva, E. V. Baranov, I. L. Fedushkin, Mendeleev Commun., 2020, 30, 94; DOI: https://doi.org/10.1016/j.mencom.2020.01.031.

    Article  CAS  Google Scholar 

  27. Bruker, SAINT Data Reduction and Correction Program v. 8.38A, Bruker AXS, Madison, Wisconsin, USA, 2017.

  28. G. M. Sheldrick, Acta Cryst., 2015, A71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Google Scholar 

  29. G. M. Sheldrick, SHELXTL, Version 6.14, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA, 2003.

    Google Scholar 

  30. G. M. Sheldrick, SADABS v.2016/2, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA, 2016.

    Google Scholar 

  31. I. L. Fedushkin, A. A. Skatova, S. Y. Ketkov, O. V. Eremenko, A. V. Piskunov, G. K. Fukin, Angew. Chem., Int. Ed., 2007, 46, 4302; DOI: https://doi.org/10.1002/anie.200605251.

    Article  CAS  Google Scholar 

  32. I. L. Fedushkin, A. N. Lukoyanov, A. N. Tishkina, M. O. Maslov, S. Yu. Ketkov, M. Hummert, Organometallics, 2011, 13, 3628; DOI: https://doi.org/10.1021/om200313u.

    Article  Google Scholar 

  33. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, GAUSSIAN 09 (Revision D.01), Gaussian, Inc., Wallingford CT, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Fedushkin.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. A. Tartakovsky on the occasion of his 90th birthday.

The study was financially supported by the Russian Science Foundation (Project No. 20-13-00052) and was carried out using the equipment of the Center for Collective Use “Analytical Center of the IOMC RAS” with the financial support by the Grant “Ensuring the Development of the Material and Technical Infrastructure of the Centers for Collective Use of Scientific Equipment” (unique identifier RF-2296.61321X0017, agreement number 075-15-2021-670).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1626–1633, August, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koptseva, T.S., Moskalev, M.V., Skatova, A.A. et al. Borane reduction of carbon dioxide bound to diimine-supported aluminum hydrides. Russ Chem Bull 71, 1626–1633 (2022). https://doi.org/10.1007/s11172-022-3571-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3571-6

Key words

Navigation