Skip to main content
Log in

Surfactant micelles as a possible template for radical polymerization: evaluation using ESR spectroscopy

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The results of studying the interaction of iogenic surfactant micelles with oppositely charged monomers using spin probe ESR spectroscopy were generalized to assess a possibility of using surfactant micelles as a template for radical polymerization. The electrostatic interaction of monomer ions with the studied surfactants was shown to lead to a decrease in the critical micelle concentration of the surfactant. The chemical nature of the monomer exerts a significant effect on its localization on the micelles. Quaternary salts of dimethylaminoethyl methacrylate are sorbed on the micelle surface, and high concentrations of the components do not prevent the interaction and, therefore, the polymerization of these monomers on the surfactant micelles via the template mechanism is possible. The optimum monomer/surfactant ratios for the implementation of the template mechanism of polymerization were determined. The template character of the polymerization of quaternary salts of dimethylaminoethyl methacrylate under these conditions was confirmed by light scattering data. The interaction of an anionic hydrophobic monomer, sodium styrenesulfonate, with dodecyltrimethylammonium bromide leads to the incorporation of the monomer ions into the surfactant micelles, which can prevent its polymerization via the template mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Matyjaszewski, J. Xia, Chem. Rev., 2001, 101, 2921; DOI: https://doi.org/10.1021/cr940534g.

    Article  CAS  Google Scholar 

  2. J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules, 1998, 5559; DOI: https://doi.org/10.1021/ma9804951.

  3. J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, B. Charleux, Prog. Polym. Sci., 2013, 38, 63; DOI: https://doi.org/10.1016/j.progpolymsci.2012.06.002.

    Article  CAS  Google Scholar 

  4. G. Moad, D. H. Solomon, Chem. Radical Polymer., Elsevier, 2005, 613 p.

  5. Y. Y. Tan, in Comprehensive Polymer Science and Supplements, Eds G. Allen, J. C. Bevington, Elsevier, 1989, Vol. 3, p. 245; DOI: https://doi.org/10.1016/B978-0-08-096701-1.00081-1.

  6. I. M. Papisov, Polym. Sci., Ser. B, 1997, 39, 122.

    Google Scholar 

  7. S. Polowinski, Prog. Polym. Sci., 2002, 27, 537; DOI: https://doi.org/10.1016/S0079-6700(01)00035-1.

    Article  CAS  Google Scholar 

  8. Yu. V. Shulevich, A. V. Navrotskii, O. Yu. Kovaleva, V. A. Navrotskii, I. A. Novakov, J. Appl. Chem., 2005, 78, 1185; DOI: https://doi.org/10.1007/s11167-005-0476-8.

    CAS  Google Scholar 

  9. Yu. V. Shulevich, O. Yu. Kovaleva, A. V. Navrotskii, Ju. A. Zakharova, A. B. Zezin, I. A. Novakov, Polym. Sci., Ser. A, 2007, 49, 1284; DOI: https://doi.org/10.1134/S0965545X0712005X.

    Article  Google Scholar 

  10. I. A. Novakov, Yu. V. Shulevich, Yu. A. Zakharova, Le Thi Doan Chang, E. G. Dukhanina, A. V. Navrotskii, Russ. Chem. Bull., 2015, 64, 597; DOI: https://doi.org/10.1007/s11172-015-0905-7.

    Article  CAS  Google Scholar 

  11. Y. V. Shulevich, G. Petzold, A. V. Navrotskii, I. A. Novakov, Colloids Surf. A, 2012, 415, 148; DOI: https://doi.org/10.1016/j.colsurfa.2012.10.013.

    Article  CAS  Google Scholar 

  12. G. Petzold, M. Mende, N. Kochurova, Colloids. Surf. A, 2007, 298, 139; DOI: https://doi.org/10.1016/j.colsurfa.2006.12.010.

    Article  CAS  Google Scholar 

  13. V. A. Kabanov, Pure Appl. Chem., 2004, 76, 1659; DOI: https://doi.org/10.1351/pac200476091659.

    Article  CAS  Google Scholar 

  14. Y. V. Shulevich, T. H. Nguyen, D. S. Tutaev, A. V. Navrotskii, I. A. Novakov, Sep. Purif. Technol., 2013, 113, 18; DOI: https://doi.org/10.1016/j.seppur.2013.04.005.

    Article  CAS  Google Scholar 

  15. A. M. Wasserman, Russ. Chem. Rev., 1994, 63, 373; DOI: https://doi.org/10.1070/RC1994v063n05ABEH000091.

    Article  Google Scholar 

  16. B. G. Dzikovski, V. A. Livshits, Phys. Chem. Chem. Phys., 2003, 5, 5271; DOI: https://doi.org/10.1039/B305987C.

    Article  CAS  Google Scholar 

  17. D. E. Budil, S. Lee, S. Saxena, J. H. Freed, J. Magn. Reson. A, 1996, 120, 155; DOI: https://doi.org/10.1006/jmra.1996.0113.

    Article  CAS  Google Scholar 

  18. Spin Labeling. Theory and Applications, Ed. L. J. Berliner, Elsevier, 1979.

  19. A. L. Buchachenko, A. M. Vasserman, Stabil’nye radikaly [Stable Radicals], Khimiya, Moscow, 1973, 58 pp. (in Russian).

    Google Scholar 

  20. Yu. V. Shulevich, M. V. Motyakin, Yu. A. Zakharova, E. G. Gukhanina, A. M. Wasserman, A. V. Navrotskii, I. A. Novakov, Colloid J., 2015, 77, 108; DOI: https://doi.org/10.1134/S1061933X15010160.

    Article  CAS  Google Scholar 

  21. Yu. V. Shulevich, M. V. Motyakin, A. M. Wasserman, Yu. A. Zakharova, E. G. Gukhanina, A. V. Navrotskii, I. A. Novakov, Colloid J., 2016, 78, 808; DOI: https://doi.org/10.1134/S1061933X16060156.

    Article  CAS  Google Scholar 

  22. Yu. V. Shulevich, Yu. A. Zakharova, M. V. Motyakin, I. S. Ionova, E. G. Dukhanina, A. V. Navrotskii, I. A. Novakov, Colloid J., 2018, 80, 751; DOI: https://doi.org/10.1134/S1061933X18060169.

    Article  CAS  Google Scholar 

  23. M. V. Motyakin, Yu. V. Shulevich, Yu. A. Zakharova, A. M. Wasserman, A. V. Navrotskii, I. A. Novakov, Colloid J., 2009, 71, 672; DOI: https://doi.org/10.1134/S1061933X09050135.

    Article  CAS  Google Scholar 

  24. K. Holmberg, B. Jönsson, B. Kronberg, B. Lindman, Surfactants and Polymers in Aqueous Solutions, Wiley, 2002.

  25. V. A. Kasaikin, A. M. Wasserman, J. A. Zakharova, M. V. Motyakin, A. D. Kolbanovskly, Colloids. Surf. A, 1999, 147, 169; DOI: https://doi.org/10.1016/S0927-7757(98)00750-X.

    Article  CAS  Google Scholar 

  26. J. A. Zakharova, M. V. Otdelnova, I. I. Aliev, M. V. Motyakin, A. M. Wasserman, A. B. Zezin, V. A. Kabanov, Polym. Adv. Technol., 2006, 17, 914; DOI: https://doi.org/10.1002/pat.763.

    Article  CAS  Google Scholar 

  27. V. A. Kasaikin, Y. A. Zakharova, M. V. Motyakin, A. M. Wasserman, Colloid J., 1996, 58, 431.

    Google Scholar 

  28. V. V. Egorov, V. P. Zubov, Russ. Chem. Rev., 1987, 56, 1153; DOI: https://doi.org/10.1070/RC1987v056n12ABEH003328.

    Article  Google Scholar 

  29. M. Pisárčik, F. Devínsky, M. Pupák, Open. Chem., 2015, 13, 922; DOI: https://doi.org/10.1515/chem-2015-0103.

    Article  Google Scholar 

  30. F. H. Quina, P. M. Nassar, J. B. S. Bonilha, B. L. Bales, J. Phys. Chem., 1995, 99, 17028; DOI: https://doi.org/10.1021/j100046a031.

    Article  CAS  Google Scholar 

  31. P. A. Hassan, G. Fritz, E. W. Kaler, J. Colloid Interface Sci., 2003, 257, 154; DOI: https://doi.org/10.1016/S0021-9797(02)00020-6.

    Article  CAS  Google Scholar 

  32. T. Patel, G. Ghosh, V. Aswal, P. Bahadur, Colloid Polym. Sci., 2009, 287, 1175; DOI: https://doi.org/10.1007/s00396-009-2079-z.

    Article  CAS  Google Scholar 

  33. E. A. G. Aniansson, S. N. Wall, M. Almgren, H. Hoffmann, I. Kielmann, W. Ulbricht, R. Zana, J. Lang, C. Tondre, J. Phys. Chem., 1976, 80, 905; DOI: https://doi.org/10.1021/j100550a001.

    Article  CAS  Google Scholar 

  34. V. V. Egorov, S. Yu. Zaitsev, V. P. Zubov, Polym. Sci., Ser. A, 1991, 33, 1475; DOI: https://doi.org/10.1016/0032-3950(91)90031-K.

    Google Scholar 

  35. Zh. Gao, J. C. T Kwak, R. E. Wasylishen, J. Colloid Interface Sci., 1988, 126, 371; DOI: https://doi.org/10.1016/0021-9797(88)90132-4.

    Article  CAS  Google Scholar 

  36. Ch. E. Williamson, A. H. Corwin, J. Colloid Interface Sci., 1972, 38, 567; DOI: https://doi.org/10.1016/0021-9797(72)90390-6.

    Article  CAS  Google Scholar 

  37. P. Bilski, R. Dabestani, C. F. Chignell, J. Phys. Chem., 1991, 95, 5784; DOI: https://doi.org/10.1021/j100168a015.

    Article  CAS  Google Scholar 

  38. M. Bhat, V. G. Gaikar, Langmuir, 1999, 15, 4740; DOI: https://doi.org/10.1021/la981439w.

    Article  CAS  Google Scholar 

  39. A. Popov, J. Zakharova, A. Wasserman, M. Motyakin, V. Kasaikin, J. Phys. Chem., B, 2012, 116, 12332; DOI: https://doi.org/10.1021/jp304819p.

    Article  CAS  Google Scholar 

  40. T. Itaya, H. Ochiai, K. Ueda, A. Imamura, Macromolecules, 1993, 26, 6021; DOI: https://doi.org/10.1021/ma00074a026.

    Article  CAS  Google Scholar 

  41. M. Kubota, A. Ono, Tetrahedron Lett., 2004, 45, 1187; DOI: https://doi.org/10.1016/j.tetlet.2003.11.144.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Shulevich.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. A. Tartakovsky on the occasion of his 90th birthday.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1593–1603, August, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shulevich, Y.V., Zakharova, J.A., Motyakin, M.V. et al. Surfactant micelles as a possible template for radical polymerization: evaluation using ESR spectroscopy. Russ Chem Bull 71, 1593–1603 (2022). https://doi.org/10.1007/s11172-022-3568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3568-1

Key words

Navigation