Skip to main content
Log in

Unexpected results of the reactions of manganese and vanadium β-diketiminate halide complexes with Na[HBEt3]

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reaction of [(MenacnacDipp)Mn(μ-Cl)]2(2) (MenacnacDipp = HC(C(Me)NDipp)2; Dipp = 2,6-Pri2C6H3) with sodium triethylborohydride in a toluene—THF mixture afforded the complex [(MenacnacDipp)Mn(μ-H)2BEt2(THF)] (3). The reaction of 2 with Na[HBEt3] in toluene under THF-free conditions gave a mixture of products. The set and the ratio of these products in the resulting crystalline mixture were established by quantitative powder X-ray diffraction analysis: [(MenacnacDipp)Mn(μ-H)]2(1), [(MenacnacDipp)−Mn(μ-H)2BEt2] (4), and unreacted compound 2 in the ratio of 15:4:1 and traces of an unknown crystalline phase. The reaction of [(MenacnacDipp)VCl2] (5) with Na[HBEt3] yielded the compound [(MenacnacDipp)V(μ-H)(μ,κ1:1−C:C′−C2H4)BEt2] (6) containing the unusual ligand [HBEt2(CH2CH2)]2−. The vanadium analog of compound 3, [(MenacnacDipp)V(μ-H)2BEt2(THF)] (7), was isolated in one experiment. Besides. a small amount of the complex [(MenacnacDipp)V(μ-H)BEt3(THF)] (8) was detected in the mixture of crystalline products. The structures of compounds 3, 4, 6, 7, and 8 were determined by single-crystal X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Maeland, in Recent Advances in Hydride Chemistry, Eds M. Peruzzini, R. Poli, Elsevier Science, Amsterdam, 2001, p. 531; DOI: https://doi.org/10.1016/B978-044450733-4/50018-8.

  2. S. W. M. Crossley, C. Obradors, R. M. Martinez, R. A. Shenvi, Chem. Rev., 2016, 116, 8912; DOI: https://doi.org/10.1021/acs.chemrev.6b00334.

    Article  CAS  Google Scholar 

  3. Yu. M. Milekhin, D. N. Sadovnichii, A. A. Koptelov, M. M. Kireenko, S. A. Malinin, Russ. Chem. Bull., 2022, 71, 44; DOI: https://doi.org/10.1007/s11172-022-3374-9.

    Article  CAS  Google Scholar 

  4. D. Schilter, J. M. Camara, M. T. Huynh, S. Hammes-Schiffer, T. B. Rauchfuss, Chem. Rev., 2016, 116, 8693; DOI: https://doi.org/10.1021/acs.chemrev.6b00180.

    Article  CAS  Google Scholar 

  5. N. T. Coles, M. F. Mahon, R. L. Webster, Organometallics, 2017, 36, 2262; DOI: https://doi.org/10.1021/acs.organomet.7b00326.

    Article  CAS  Google Scholar 

  6. J. Vela, J. M. Smith, Y. Yu, N. A. Ketterer, C. J. Flaschenriem, R. J. Lachicotte, P. L. Holland, J. Am. Chem. Soc., 2005, 127, 7857; DOI: https://doi.org/10.1021/ja042672l.

    Article  CAS  Google Scholar 

  7. T. K. Mukhopadhyay, M. Flores, T. L. Groy, R. J. Trovitch, Chem. Sci., 2018, 9, 7673; DOI: https://doi.org/10.1039/C8SC02768D.

    Article  CAS  Google Scholar 

  8. T. T. Nguyen, J.-H. Kim, S. Kim, C. Oh, M. Flores, T. L. Groy, M.-H. Baik, R. J. Trovitch, Chem. Commun., 2020, 56, 3959; DOI: https://doi.org/10.1039/C9CC09921B.

    Article  CAS  Google Scholar 

  9. S. Yao, Y. Xiong, M. Driess, Chem. — A Eur. J., 2012, 18, 11356; DOI: https://doi.org/10.1002/chem.201201335.

    Article  CAS  Google Scholar 

  10. A. R. Sadique, E. A. Gregory, W. W. Brennessel, P. L. Holland, J. Am. Chem. Soc., 2007, 129, 8112; DOI: https://doi.org/10.1021/ja069199r.

    Article  CAS  Google Scholar 

  11. J. M. Smith, R. J. Lachicotte, P. L. Holland, J. Am. Chem. Soc., 2003, 125, 15752; DOI: https://doi.org/10.1021/ja038152s.

    Article  CAS  Google Scholar 

  12. D. J. Webb, C. M. Fitchett, M. Lein, J. R. Fulton, Chem. Commun., 2018, 54, 460; DOI: https://doi.org/10.1039/C7CC08393A.

    Article  CAS  Google Scholar 

  13. K. Ding, W. W. Brennessel, P. L. Holland, J. Am. Chem. Soc., 2009, 131, 10804; DOI: https://doi.org/10.1021/ja902812y.

    Article  CAS  Google Scholar 

  14. S. Pfirrmann, C. Limberg, B. Ziemer, Dalton Trans., 2008, 6689; DOI: https://doi.org/10.1039/b816136b.

  15. J. Spielmann, D. Piesik, B. Wittkamp, G. Jansen, S. Harder, Chem. Commun., 2009, 3455; DOI: https://doi.org/10.1039/b906319f.

  16. W. H. Bernskoetter, E. Lobkovsky, P. J. Chirik, Chem. Commun., 2004, 764; DOI: https://doi.org/10.1039/B315817A.

  17. H. Braunschweig, M. Burzler, T. Kupfer, K. Radacki, F. Seeler, Angew. Chem., Int. Ed., 2007, 46, 7785; DOI: https://doi.org/10.1002/anie.200702029.

    Article  Google Scholar 

  18. H. Braunschweig, C. Burschka, M. Burzler, S. Metz, K. Radacki, Angew. Chem., Int. Ed., 2006, 45, 4352; DOI: https://doi.org/10.1002/anie.200601237.

    Article  CAS  Google Scholar 

  19. S. Schlecht, J. F. Hartwig, J. Am. Chem. Soc., 2000, 122, 9435; DOI: https://doi.org/10.1021/ja001546o.

    Article  CAS  Google Scholar 

  20. B. H. Toby, R. B. Von Dreele, J. Appl. Crystallogr., 2013, 46, 544; DOI: https://doi.org/10.1107/S0021889813003531.

    Article  CAS  Google Scholar 

  21. A. Y. Konokhova, M. Y. Afonin, T. S. Sukhikh, S. N. Konchenko, J. Coord. Chem., 2019, 72, 1661; DOI: https://doi.org/10.1080/00958972.2019.1613649.

    Article  CAS  Google Scholar 

  22. A. L. Rheingold, K. H. Theopold, Cambridge Structural Database System (Private Communication), 2019, CCDC 1964440.

  23. S. L. J. Conway, L. H. Doerrer, M. L. H. Green, M. A. Leech, Organometallics, 2000, 19, 630; DOI: https://doi.org/10.1021/om990810n.

    Article  CAS  Google Scholar 

  24. C. P. Gerlach, J. Arnold, J. Chem. Soc., Dalton Trans., 1997, 4795; DOI: https://doi.org/10.1039/a705238c.

  25. T. Komuro, T. Matsuo, H. Kawaguchi, K. Tatsumi, Inorg. Chem., 2005, 44, 175; DOI: https://doi.org/10.1021/ic048721c.

    Article  CAS  Google Scholar 

  26. M. W. Bouwkamp, P. H. M. Budzelaar, J. Gercama, I. Del Hierro Morales, J. de Wolf, A. Meetsma, S. I. Troyanov, J. H. Teuben, B. Hessen, J. Am. Chem. Soc., 2005, 127, 14310; DOI: https://doi.org/10.1021/ja054544i.

    Article  CAS  Google Scholar 

  27. F. Basuli, J. Tomaszewski, J. C. Huffman, D. J. Mindiola, Organometallics, 2003, 22, 4705; DOI: https://doi.org/10.1021/om030374b.

    Article  CAS  Google Scholar 

  28. W. J. Evans, J. M. Perotti, J. W. Ziller, Inorg. Chem., 2005, 44, 5820; DOI: https://doi.org/10.1021/ic0501061.

    Article  CAS  Google Scholar 

  29. D. M. Lyubov, G. K. Fukin, A. A. Trifonov, Inorg. Chem., 2007, 46, 11450; DOI: https://doi.org/10.1021/ic701215t.

    Article  CAS  Google Scholar 

  30. J. Cheng, J. Takats, M. J. Ferguson, R. McDonald, J. Am. Chem. Soc., 2008, 130, 1544; DOI: https://doi.org/10.1021/ja0776273.

    Article  CAS  Google Scholar 

  31. Ch. Cui, A. Shafir, J. A. R. Schmidt, A. G. Oliver, J. Arnold, Dalton Trans., 2005, 1387; DOI: https://doi.org/10.1039/B501437A.

  32. M. J. Harvey, T. P. Hanusa, M. Pink, Chem. Commun., 2000, 489; DOI: https://doi.org/10.1039/a908674i.

  33. S. Krieck, H. Gorls, M. Westerhausen, Inorg. Chem. Commun., 2010, 13, 1466; DOI: https://doi.org/10.1016/j.inoche.2010.08.018.

    Article  CAS  Google Scholar 

  34. A. K. Hickey, C.-H. Chen, M. Pink, J. M. Smith, Organometallics, 2015, 34, 4560; DOI: https://doi.org/10.1021/acs.organomet.5b00646.

    Article  CAS  Google Scholar 

  35. T. Janes, V. T. Annibale, D. Song, J. Organomet. Chem., 2018, 872, 79; DOI: https://doi.org/10.1016/j.jorganchem.2018.07.025.

    Article  CAS  Google Scholar 

  36. L. R. Collins, N. Rajabi, S. A. Macgregor, M. F. Mahon, M. K. Whittlesey, Angew. Chem., Int. Ed., 2016, 55, 15539; DOI: https://doi.org/10.1002/anie.201608081.

    Article  CAS  Google Scholar 

  37. M. Sietzen, S. Batke, P. W. Antoni, H. Wadepohl, J. Ballmann, Dalton Trans., 2017, 46, 5816; DOI: https://doi.org/10.1039/C7DT00413C.

    Article  CAS  Google Scholar 

  38. J. D. Masuda, D. W. Stephan, Can. J. Chem., 2005, 83, 477; DOI: https://doi.org/10.1139/v05-057.

    Article  CAS  Google Scholar 

  39. J. L. Galler, S. Goodchild, J. Gould, R. McDonald, A. Sella, Polyhedron, 2004, 23, 253; DOI: https://doi.org/10.1016/j.poly.2003.11.014.

    Article  CAS  Google Scholar 

  40. G. Jia, A. J. Lough, R. H. Morris, J. Organomet. Chem., 1993, 461, 147; DOI: https://doi.org/10.1016/0022-328X(93)83286-5.

    Article  CAS  Google Scholar 

  41. Y. Yu, W. W. Brennessel, P. L. Holland, Organometallics, 2007, 26, 3217; DOI: https://doi.org/10.1021/om7003805.

    Article  CAS  Google Scholar 

  42. N. M. Hein, F. S. Pick, M. D. Fryzuk, Inorg. Chem., 2017, 56, 14513; DOI: https://doi.org/10.1021/acs.inorgchem.7b02199.

    Article  CAS  Google Scholar 

  43. M. Yu. Afonin, A. Yu. Sedelnikova, A. Yu. Konokhova, T. S. Sukhikh, S. N. Konchenko, Russ. J. Struct. Chem., 2021, 62, 1580; DOI:https://doi.org/10.26902/JSC_id80783.

    Article  Google Scholar 

  44. P. H. M. Budzelaar, A. B. van Oort, A. G. Orpen, Eur. J. Inorg. Chem., 1998, 1485; DOI: https://doi.org/10.1002/(SICI)1099-0682(199810)1998:10<1485::AID-EJIC1485>3.0.CO;2-F.

  45. Bruker Apex3 Software Suite: Apex3, SADABS-2016/2 and SAINT, Version 2018.7-2, Madison, WI: Bruker AXS Inc., 2017.

  46. G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv., 2015, 71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Article  Google Scholar 

  47. G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Article  Google Scholar 

  48. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339; DOI: https://doi.org/10.1107/S0021889808042726.

    CAS  Google Scholar 

  49. A. V. Alexeev, S. A. Gromilov, J. Struct. Chem., 2010, 51, 744; DOI: https://doi.org/10.1007/s10947-010-0110-3.

    Article  CAS  Google Scholar 

  50. C. Prescher, V. B. Prakapenka, High Press. Res., 2015, 35, 223; DOI: https://doi.org/10.1080/08957959.2015.1059835.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (Project No. 19-73-00183) and the Ministry of Science and Higher Education of the Russian Federation (Project Nos 121031700321-3 and 121031700313-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Konchenko.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. I. Ovcharenko on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1429–1440, July, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonin, M.Y., Stypnik, N.V., Konokhova, A.Y. et al. Unexpected results of the reactions of manganese and vanadium β-diketiminate halide complexes with Na[HBEt3]. Russ Chem Bull 71, 1429–1440 (2022). https://doi.org/10.1007/s11172-022-3549-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3549-4

Key words

Navigation