Skip to main content
Log in

A relationship between the coordination octahedron parameters and ligand conformation during spin transition in the cationic complex [N, N′-3,6-diazaoctane-1,8-diylbis(salicylidenaldiminato)]iron(iii) [FeIII(Sal2trien)]+

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Magnetostructural relationships between the spin state of the FeIII ion, conformations of the ethylene bridges (-CH2-CH2-) in the five-membered chelates of the ligand, and Fe-N/O bonds were constructed due to an analysis of the literature data for 29 structures based on the [N,N′-3,6-diazaoctane-1,8-diylbis(salicylidenaldiminato)]iron(iii) [FeIII(Sal2trien)]+ (H2Sal2trien is the hexadentate ((Nam)2(Nim)2O2) Schiffbase, condensation product of triethylenetetramine and salicylaldehyde). According to the analysis results for the dependences of the Fe-N bond lengths on the fraction of the high-spin state (γHS, S = 5/2), the Fe-Nam and Fe-Nim bonds depend most strongly on the change in γHS, since the donor N atoms are characterized by high σ-overlapping with the d-orbitals of the metal ion. The conformational switch of the ethylene bridges of the ligand occurs in the range 40% < γHS < 85% at the relative elongations of the Fe-Nam and Fe-Nim bonds equal to 4.0–8.5% and 3.4–8.6%, respectively. Relationships were revealed between the γHS values and ratios of high- and low-spin conformers of the complex cation in the unit cell. The scatter of bond length values was found in the polyhedron FeN4O2 to 4% at γHS = 0% and to 5% γHS = 100%, which is caused by the effect of the crystalline environment of the complex cation. The determined features of the structural rearrangement of the hexadentate macrocyclic ligand of the Saltrien type can be used as a criterion for the estimation of γHS and development of molecular design of FeIII compounds with controlled spin transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Pritchard, S. A. Barrett, C. A. Kilner, M. A. Halcrow, Dalton Trans., 2008, 3159; DOI: https://doi.org/10.1039/B801892H.

  2. G. G. Levchenko, A. V. Khristov, V. N. Varyukhin, Low Temperature Physics, 2014, 7, 571; DOI: https://doi.org/10.1063/1.4891445.

    Article  Google Scholar 

  3. A. A. Starikova, M. G. Chegerev, A. G. Starikov, Russ. Chem. Bull., 2020, 69, 203; DOI: https://doi.org/10.1007/s11172-020-2747-1.

    Article  CAS  Google Scholar 

  4. V. I. Minkin, A. A. Starikova, M. G. Chegerev, A. G. Starikov, Russ. Chem. Bull., 2021, 70, 811; DOI: https://doi.org/10.1007/s11172-021-3154-y.

    Article  CAS  Google Scholar 

  5. G. N. Lipunova, T. G. Fedorchenko, A. N. Tsmokalyuk, O. N. Chupakhina, Russ. Chem. Bull., 2020, 69, 1203; DOI: https://doi.org/10.1007/s11172-020-2892-6.

    Article  CAS  Google Scholar 

  6. N. I. Neshev, E. M. Sokolova, G. I. Kozub, T. A. Kondrat’eva, N. A. Sanina, Russ. Chem. Bull., 2020, 69, 1987; DOI: https://doi.org/10.1007/s11172-020-2989-y.

    Article  CAS  Google Scholar 

  7. V. I. Minkin, A. G. Starikov, M. G. Chegerev, A. A. Starikova, Russ. Chem. Bull., 2021, 70, 2315; DOI: https://doi.org/10.1007/s11172-021-3347-4.

    Article  CAS  Google Scholar 

  8. Z. Y. Li, O. Sato, Z. S. Yao, S. Kang, S. Kanegawa, Multifunctional Materials Combining Spin-Crossover with Conductivity and Magnetic Ordering. Spin-Crossover Materials: Properties and Applications, John Wiley and Sons, Chichester, 2013, pp. 303–319; DOI: https://doi.org/10.1002/9781118519301.ch11.

    Google Scholar 

  9. C. Gandolfi, C. Moitzi, P. Schurtenberger, G. G. Morgan, M. Albrecht, J. Am. Chem. Soc., 2008, 130, 14434; DOI: https://doi.org/10.1021/ja806611y.

    Article  CAS  Google Scholar 

  10. S. Dorbes, L. Valade, J. A. Real, C. Faulmann, Chem. Commun., 2005, 69; DOI: https://doi.org/10.1039/B412182A.

  11. M. A. Halcrow, Crystals, 2016, 6, 58; DOI: https://doi.org/10.3390/cryst6050058.

    Article  Google Scholar 

  12. M. A. Blagov, V. B. Krapivin, S. V. Simonov, N. G. Spitsyna, Dalton Trans., 2018, 47, 16040; DOI: https://doi.org/10.1039/c8dt03619e.

    Article  CAS  Google Scholar 

  13. M. Clemente-León, E. Coronado, M. López-Jordá, G. M. Espallargas, A. Soriano-Portillo, J. C. Waerenborgh, Chem. Eur. J., 2010, 16, 2207; DOI: https://doi.org/10.1002/chem.200902668.

    Article  Google Scholar 

  14. M. Clemente-León, E. Coronado, M. López-Jordá, C. Desplanches, S. Asthana, H. Wang, J.-F. Létard, Chem. Sci., 2011, 2, 1121; DOI: https://doi.org/10.1039/C1SC00015B.

    Article  Google Scholar 

  15. N. Spitsyna, N. Ovanesyan, M. Blagov, V. Krapivin, A. Lobach, A. Dmitriev, S. Simonov, L. Zorina, L. Pilia, P. Deplano, A. Vasiliev, O. Maximova, E. Yagubskii, Eur. J. Inorg. Chem., 2020, 48, 4556; DOI: https://doi.org/10.1002/ejic.202000873.

    Article  Google Scholar 

  16. Cambridge Structural Database System, Version 3.0, 2021; https://www.ccdc.cam.ac.uk/.

  17. C. Faulmann, P. Á. Szilágyi, K. Jacob, J. Chahine, L. Valade, New J. Chem., 2009, 33, 1268; DOI: https://doi.org/10.1039/B901779H.

    Article  CAS  Google Scholar 

  18. M. Bera, U. Mukhopadhyay, D. Ray, Inorg. Chim. Acta, 2005, 358, 437; DOI: https://doi.org/10.1016/j.ica.2004.07.034.

    Article  CAS  Google Scholar 

  19. Y. Nishida, K. Kino, S. Kida, J. Chem. Soc. Dalton Trans., 1987, 1157; DOI: https://doi.org/10.1039/DT9870001157.

  20. Y. Maeda, H. Oshio, Y. Tanigawa, T. Oniki, Y. Takashima, Bull. Chem. Soc. Jpn, 1991, 64, 1522; DOI: https://doi.org/10.1246/bcsj.64.1522.

    Article  CAS  Google Scholar 

  21. P. N. Martinho, C. J. Harding, H. Müller-Bunz, M. Albrecht, G. G. Morgan, Eur. J. Inorg. Chem., 2010, 5, 675; DOI: https://doi.org/10.1002/ejic.200901183.

    Article  Google Scholar 

  22. E. Sinn, G. Sim, E. V. Dose, M. F. Tweedle, L. J. Wilson, J. Am. Chem. Soc., 1978, 100, 3375; DOI: https://doi.org/10.1021/ja00479a021.

    Article  CAS  Google Scholar 

  23. L. C. J. Pereira, A. M. Gulamhussen, J. C. Dias, I. C. Santos, M. Almeida, Inorg. Chim. Acta, 2007, 360, 3887; DOI: https://doi.org/10.1016/j.ica.2007.03.015.

    Article  CAS  Google Scholar 

  24. M. Clemente-León, E. Coronado, M. C. Giménez-López, A. Soriano-Portillo, J. C. Waerenborgh, F. S. Delgado, C. Ruiz-Péres, Inorg. Chem., 2008, 47, 9111; DOI: https://doi.org/10.1021/ic801165b.

    Article  Google Scholar 

  25. A. Abhervé, M. Clemente-León, E. Coronado, C. J. Gómez-García, M. Verneret, Inorg. Chem., 2014, 53, 12014; DOI: https://doi.org/10.1021/ic5016803.

    Article  Google Scholar 

  26. Y. N. Shvachko, D. V. Starichenko, A. V. Korolyov, A. I. Kotov, L. I. Buravov, V. N. Zverev, S. V. Simonov, L. V. Zorina, E. B. Yagubskii, Magnetochemistry, 2017, 3, 9; DOI: https://doi.org/10.3390/magnetochemistry3010009.

    Article  Google Scholar 

  27. C. M. Grunert, H. A. Goodwin, C. Carbonera, J.-F. Lètard, J. Kusz, P. Gütlich, J. Phys. Chem. B, 2007, 111, 6738; DOI: https://doi.org/10.1021/jp068774a.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out in terms of the state assignment of the Institute of Problems of Chemical Physics of the Russian Academy of Sciences (registration No. AAAA-A19-119092390079-8) using the Computer Center for Collective Use of the Institute of Problems of Chemical Physics of the Russian Academy of Sciences and partially in terms of the state task of the Institute of Solid State Physics of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Blagov, S. V. Simonov or N. G. Spitsyna.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. I. Ovcharenko on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1394–1401, July, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blagov, M.A., Krapivin, V.B., Simonov, S.V. et al. A relationship between the coordination octahedron parameters and ligand conformation during spin transition in the cationic complex [N, N′-3,6-diazaoctane-1,8-diylbis(salicylidenaldiminato)]iron(iii) [FeIII(Sal2trien)]+. Russ Chem Bull 71, 1394–1401 (2022). https://doi.org/10.1007/s11172-022-3545-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3545-8

Key words

Navigation