Skip to main content
Log in

Temperature dynamics of magnetoactive compounds under terahertz irradiation: characterization by an EPR study

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A possibility of fast rapid temperature changing for the studied compound makes it possible to study related phenomena, such as thermally induced trapping of metastable states in magnetoactive compounds and thermally activated catalytic and biological processes. The Electron Paramagnetic Resonance (EPR) spectroscopy station at the Novosibirsk Free Electron Laser (NovoFEL) allows one to study effects of powerful terahertz (THz) radiation on the spin state of paramagnetic systems. A change in the sample temperature as a result of radiation absorption is an inevitable consequence of such an exposure. However, the sample heating at the NovoFEL EPR station itself is of interest due to the record power of THz radiation and small sizes of the samples used. A combination of these two factors can provide a significantly high heating rate. The magnetoactive complex [Cu(hfac)2LEt] was chosen as a model system for studying the heating process, since the complex has a magnetostructural transition at ∼125 K with substantially different spin states above and below the transition temperature. The heating processes with the amplitudes above 60 K were studied, the heating and cooling rates of the sample in similar experiments were estimated, and prospects for using the method to study various thermally induced effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Buchen, P. Gütlich, H. A. Goodwin, Inorg. Chem., 1994, 33, 4573; DOI: https://doi.org/10.1021/ic00098a026.

    Article  CAS  Google Scholar 

  2. T. Buchen, P. Gütlich, K. H. Sugiyarto, H. A. Goodwin, Chem. — A Eur. J., 1996, 2, 1134; DOI: https://doi.org/10.1002/chem.19960020915.

    Article  CAS  Google Scholar 

  3. Z. Yu, K. Liu, J. Q. Tao, Z. J. Zhong, X. Z. You, G. G. Siu, Appl. Phys. Lett., 1999, 74, 4029; DOI: https://doi.org/10.1063/1.123250.

    Article  CAS  Google Scholar 

  4. M. Marchivie, P. Guionneau, J. F. Létard, D. Chasseau, J. A. K. Howard, J. Phys. Chem. Solids, 2004, 65, 17; DOI: https://doi.org/10.1016/j.jpcs.2003.09.002.

    Article  CAS  Google Scholar 

  5. E. G. Panarelli, P. Gast, E. J. J. Groenen, Phys. Chem. Chem. Phys., 2020, 22, 9487; DOI: https://doi.org/10.1039/d0cp00664e.

    Article  CAS  Google Scholar 

  6. O. F. Mohammed, P. C. Samartzis, A. H. Zewail, J. Am. Chem. Soc., 2009, 131, 16010; DOI: https://doi.org/10.1021/ja908079x.

    Article  CAS  Google Scholar 

  7. O. Cannelli, C. Bacellar, R. A. Ingle, R. Bohinc, D. Kinschel, B. Bauer, D. S. Ferreira, D. Grolimund, G. F. Mancini, M. Chergui, Struct. Dyn., 2019, 6, 064303; DOI: https://doi.org/10.1063/1.5129626.

    Article  CAS  Google Scholar 

  8. R. Callender, R. B. Dyer, Curr. Opin. Struct. Biol., 2002, 12, 628; DOI: https://doi.org/10.1016/S0959-440X(02)00370-6.

    Article  CAS  Google Scholar 

  9. M. Gruebele, J. Sabelko, R. Ballew, J. Ervin, Acc. Chem. Res., 1998, 31, 699; DOI: https://doi.org/10.1021/ar970083x.

    Article  CAS  Google Scholar 

  10. G. Feher, R. A. Isaacson, J. D. McElroy, Rev. Sci. Instrum., 1969, 40, 1640; DOI: https://doi.org/10.1063/1.1683889.

    Article  CAS  Google Scholar 

  11. M. Azarkh, E. J. J. Groenen, J. Phys. Chem. B, 2015, 119, 13416; DOI: https://doi.org/10.1021/acs.jpcb.5b08353.

    Article  CAS  Google Scholar 

  12. P. K. Mishra, V. Bettaque, O. Vendrell, R. Santra, R. Welsch, J. Phys. Chem. A, 2018, 122, 5211; DOI: https://doi.org/10.1021/acs.jpca.8b00828.

    Article  CAS  Google Scholar 

  13. Y. Egozy, S. Weiss, J. Phys. E., 1976, 9, 366; DOI: https://doi.org/10.1088/0022-3735/9/5/014.

    Article  CAS  Google Scholar 

  14. A. Folli, H. Choi, M. Barter, J. Harari, E. Richards, D. Slocombe, A. Porch, D. M. Murphy, J. Magn. Reson., 2020, 310, 106644; DOI: https://doi.org/10.1016/j.jmr.2019.106644.

    Article  CAS  Google Scholar 

  15. V. V. Gerasimov, O. E. Kameshkov, B. A. Knyazev, N. D. Osintseva, V. S. Pavelyev, J. Opt. (UK), 2021, 23, 10LT01; DOI: https://doi.org/10.1088/2040-8986/ac1fc4.

    Article  CAS  Google Scholar 

  16. E. N. Chesnokov, V. V. Kubarev, P. V. Koshlyakov, Laser Phys. Lett., 2021, 18, 085205; DOI: https://doi.org/10.1088/1612-202X/ac0d08.

    Article  CAS  Google Scholar 

  17. S. N. Khonina, K. N. Tukmakov, S. A. Degtyarev, A. S. Reshetnikov, V. S. Pavelyev, B. A. Knyazev, Y. Y. Choporova, Comput. Opt., 2019, 43, 756; DOI: https://doi.org/10.18287/2412-6179-2019-43-5-756-764.

    Article  Google Scholar 

  18. Y. Y. Choporova, B. A. Knyazev, G. N. Kulipanov, V. S. Pavelyev, M. A. Scheglov, N. A. Vinokurov, B. O. Volodkin, V. N. Zhabin, Phys. Rev. A, 2017, 96, 023846; DOI: https://doi.org/10.1103/PhysRevA.96.023846.

    Article  Google Scholar 

  19. V. V. Kubarev, Y. V. Getmanov, O. A. Shevchenko, AIP Adv., 2017, 7, 095123; DOI: https://doi.org/10.1063/1.4992058.

    Article  Google Scholar 

  20. A. S. Kozlov, A. K. Petrov, S. B. Malyshkin, O. A. Shevchenko, J. Surf. Investig., 2019, 13, 1189; DOI: https://doi.org/10.1134/S1027451019060375.

    Article  CAS  Google Scholar 

  21. S. Peltek, I. Meshcheryakova, E. Kiseleva, D. Oshchepkov, A. Rozanov, D. Serdyukov, E. Demidov, G. Vasiliev, N. Vinokurov, A. Bryanskaya, S. Bannikova, V. Popik, T. Goryachkovskaya, Sci. Rep., 2021, 11, 20464; DOI: https://doi.org/10.1038/s41598-021-99665-3.

    Article  CAS  Google Scholar 

  22. D. S. Serdyukov, T. N. Goryachkovskaya, I. A. Mescheryakova, S. A. Kuznetsov, V. M. Popik, S. E. Peltek, Biomed. Opt. Express, 2021, 12, 705; DOI: https://doi.org/10.1364/boe.412074.

    Article  Google Scholar 

  23. D. S. Serdyukov, T. N. Goryachkovskaya, I. A. Mescheryakova, S. V. Bannikova, S. A. Kuznetsov, O. P. Cherkasova, V. M. Popik, S. E. Peltek, Biomed. Opt. Express, 2020, 11, 5258; DOI: https://doi.org/10.1364/boe.400432.

    Article  CAS  Google Scholar 

  24. E. V. Demidova, T. N. Goryachkovskaya, I. A. Mescheryakova, T. K. Malup, A. I. Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, S. E. Peltek, IEEE Trans. Terahertz Sci. Technol., 2016, 6, 435; DOI: https://doi.org/10.1109/TTHZ.2016.2532344.

    Article  CAS  Google Scholar 

  25. A. R. Melnikov, A. A. Samsonenko, Y. V. Getmanov, O. A. Shevchenko, D. A. Shevchenko, A. A. Stepanov, M. V. Fedin, M. A. Yurkin, S. L. Veber, Opt. Laser Technol., 2021, 143, 107375; DOI: https://doi.org/10.1016/j.optlastec.2021.107375.

    Article  CAS  Google Scholar 

  26. S. L. Veber, M. V. Fedin, K. Y. Maryunina, K. N. Boldyrev, M. A. Sheglov, V. V. Kubarev, O. A. Shevchenko, N. A. Vinokurov, G. N. Kulipanov, R. Z. Sagdeev, V. I. Ovcharenko, E. G. Bagryanskaya, J. Phys. Chem. A, 2013, 117, 1483; DOI: https://doi.org/10.1021/jp311404t.

    Article  CAS  Google Scholar 

  27. S. L. Veber, S. V. Tumanov, E. Y. Fursova, O. A. Shevchenko, Y. V. Getmanov, M. A. Scheglov, V. V. Kubarev, D. A. Shevchenko, I. I. Gorbachev, T. V. Salikova, G. N. Kulipanov, V. I. Ovcharenko, M. V. Fedin, J. Magn. Reson., 2018, 288, 11; DOI: https://doi.org/10.1016/j.jmr.2018.01.009.

    Article  CAS  Google Scholar 

  28. N. A. Artiukhova, G. V. Romanenko, A. S. Bogomyakov, I. Y. Barskaya, S. L. Veber, M. V. Fedin, K. Y. Maryunina, K. Inoue, V. I. Ovcharenko, J. Mater. Chem. C, 2016, 4, 11157; DOI: https://doi.org/10.1039/c6tc03216h.

    Article  CAS  Google Scholar 

  29. G. V. Romanenko, G. A. Letyagin, K. Y. Maryunina, A. S. Bogomyakov, S. Nishihara, K. Inoue, V. I. Ovcharenko, Russ. Chem. Bull., 2020, 69, 1530; DOI: https://doi.org/10.1007/s11172-020-2932-].

    Article  CAS  Google Scholar 

  30. N. A. Artiukhova, G. V. Romanenko, G. A. Letyagin, A. S. Bogomyakov, S. E. Tolstikov, V. I. Ovcharenko, Russ. Chem. Bull., 2019, 68, 732; DOI: https://doi.org/10.1007/s11172-019-2480-9.

    Article  CAS  Google Scholar 

  31. S. L. Veber, E. A. Suturina, M. V. Fedin, K. N. Boldyrev, K. Y. Maryunina, R. Z. Sagdeev, V. I. Ovcharenko, N. P. Gritsan, E. G. Bagryanskaya, Inorg. Chem., 2015, 54, 3446; DOI: https://doi.org/10.1021/ic5031153.

    Article  CAS  Google Scholar 

  32. O. A. Shevchenko, A. R. Melnikov, S. V. Tararyshkin, Y. V. Getmanov, S. S. Serednyakov, E. V. Bykov, V. V. Kubarev, M. V. Fedin, S. L. Veber, Materials (Basel), 2019, 12, 3063; DOI: https://doi.org/10.3390/ma12193063.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (Project No. 20-33-90190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Tumanov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. I. Ovcharenko on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1378–1384, July, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumanov, S.V., Melnikov, A.R., Artiukhova, N.A. et al. Temperature dynamics of magnetoactive compounds under terahertz irradiation: characterization by an EPR study. Russ Chem Bull 71, 1378–1384 (2022). https://doi.org/10.1007/s11172-022-3543-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3543-x

Key words

Navigation