Skip to main content
Log in

A study of the reactivity and transformations of Pd/NHC complexes in the reaction of oxidative C−H acetoxylation

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A comparative study of the reactivity and transformation and degradation pathways under conditions of the oxidative acetoxylation was carried out for various palladium complexes. The implementation was confirmed for the NHC-connected mechanism of catalysis. Effects of the process of pyridine coligand elimination on catalysis were investigated. It was found that free pyridine inhibits the catalysis of oxidative acetoxylation of 2-phenylpyridine. Mono- and diacetoxyphenylpyridines were obtained regioselectively in 84–94% yields using Pd/NHC complexes of various structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Moghimi, M. Mahdavi, A. Shafiee, A. Foroumadi, Eur. J. Org. Chem., 2016, 2016, 3282; DOI: https://doi.org/10.1002/ejoc.201600138.

    Article  CAS  Google Scholar 

  2. Q. Zhao, G. Meng, S. P. Nolan, M. Szostak, Chem. Rev., 2020, 120, 1981; DOI: https://doi.org/10.1021/acs.chemrev.9b00634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. D.-D. Li, Y.-X. Cao, G.-W. Wang, Org. Biomol. Chem., 2015, 13, 6958; DOI: https://doi.org/10.1039/C5OB00691K.

    Article  CAS  PubMed  Google Scholar 

  4. D. Sarkar, A. V. Gulevich, F. S. Melkonyan, V. Gevorgyan, ACS Catal., 2015, 5, 6792; DOI: https://doi.org/10.1021/acscatal.5b01724.

    Article  CAS  Google Scholar 

  5. B. Wang, C. Lin, Y. Liu, Z. Fan, Z. Liu, Y. Zhang, Org. Chem. Front., 2015, 2, 973; DOI: https://doi.org/10.1039/C5QO00144G.

    Article  CAS  Google Scholar 

  6. Q. Zhang, Y. Wang, T. Yang, L. Li, D. Li, Tetrahedron Lett., 2015, 56, 6136; DOI: https://doi.org/10.1016/j.tetlet.2015.09.097.

    Article  CAS  Google Scholar 

  7. J. Ding, Y. Guo, L.-Y. Shao, F.-Y. Zhao, D.-H. Liao, H.-W. Liu, Y.-F. Ji, Chin. Chem. Lett., 2016, 27, 1617; DOI: https://doi.org/10.1016/j.cclet.2016.04.007.

    Article  CAS  Google Scholar 

  8. A. Maji, B. Bhaskararao, S. Singha, R. B. Sunoj, D. Maiti, Chem. Sci., 2016, 7, 3147; DOI: https://doi.org/10.1039/C5SC04060D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. H. Vu, F. W. Chen, X.-Q. Li, ChemistrySelect, 2019, 4, 9465; DOI: https://doi.org/10.1002/slct.201902611.

    Article  CAS  Google Scholar 

  10. A. L. García-Cabeza, R. Marín-Barrios, F. J. Moreno-Dorado, M. J. Ortega, H. Vidal, J. M. Gatica, G. M. Massanet, F. M. Guerra, J. Org. Chem., 2015, 80, 6814; DOI: https://doi.org/10.1021/acs.joc.5b01043.

    Article  PubMed  CAS  Google Scholar 

  11. N. Khatun, A. Banerjee, S. K. Santra, W. Ali, B. K. Patel, RSC Adv., 2015, 5, 36461; DOI: https://doi.org/10.1039/C5RA03462K.

    Article  CAS  Google Scholar 

  12. S. Zhao, F.-J. Chen, B. Liu, B.-F. Shi, Sci. China: Chem., 2015, 58, 1302; DOI: https://doi.org/10.1007/s11426-015-5376-z.

    Article  CAS  Google Scholar 

  13. F. Wang, Q. Hu, C. Shu, Z. Lin, D. Min, T. Shi, W. Zhang, Org. Lett., 2017, 19, 3636; DOI: https://doi.org/10.1021/acs.orglett.7b01559.

    Article  CAS  PubMed  Google Scholar 

  14. J. Li, Z. Yang, T. Yang, J. Yi, C. Zhou, New J. Chem., 2018, 42, 1581; DOI: https://doi.org/10.1039/C7NJ03989A.

    Article  CAS  Google Scholar 

  15. F. Wang, Z. Lin, W. Yu, Q. Hu, C. Shu, W. Zhang, RSC Adv., 2018, 8, 16378; DOI: https://doi.org/10.1039/C8RA01974F.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. V. Botla, A. Akudari, C. Malapaka, Tetrahedron Lett., 2019, 60, 115; DOI: https://doi.org/10.1016/j.tetlet.2018.11.071.

    Article  CAS  Google Scholar 

  17. G.-J. Li, Y.-L. Pan, Y.-L. Liu, H.-F. Xu, J.-Z. Chen, Org. Lett., 2019, 21, 1740; DOI: https://doi.org/10.1021/acs.orglett.9b00306.

    Article  CAS  PubMed  Google Scholar 

  18. K. Padala, M. Jeganmohan, Chem. Commun., 2013, 49, 9651; DOI: https://doi.org/10.1039/C3CC45350B.

    Article  CAS  Google Scholar 

  19. K. Padala, M. Jeganmohan, Chem.—Eur. J., 2014, 20, 4092; DOI: https://doi.org/10.1002/chem.201304646.

    Article  CAS  PubMed  Google Scholar 

  20. K. Raghuvanshi, K. Rauch, L. Ackermann, Chem.Eur. J., 2015, 21, 1790; DOI: https://doi.org/10.1002/chem.201405071.

    Article  CAS  PubMed  Google Scholar 

  21. T. Okada, K. Nobushige, T. Satoh, M. Miura, Org. Lett., 2016, 18, 1150; DOI: https://doi.org/10.1021/acs.orglett.6b00268.

    Article  CAS  PubMed  Google Scholar 

  22. C.-A. Wang, N. Chatani, Org. Chem. Front., 2020, 7, 2955; DOI: https://doi.org/10.1039/D0QO00920B.

    Article  CAS  Google Scholar 

  23. Z. Ye, W. Wang, F. Luo, S. Zhang, J. Cheng, Org. Lett., 2009, 11, 3974; DOI: https://doi.org/10.1021/ol901609t.

    Article  CAS  PubMed  Google Scholar 

  24. K. Kim, J. Hyun, J. Kim, H. Kim, Asian J. Org. Chem., 2017, 6, 907; DOI: https://doi.org/10.1002/ajoc.201700196.

    Article  CAS  Google Scholar 

  25. C. Chen, Y. Pan, H. Zhao, X. Xu, J. Xu, Z. Zhang, S. Xi, L. Xu, H. Li, Org. Chem. Front., 2018, 5, 415; DOI: https://doi.org/10.1039/C7QO00844A.

    Article  CAS  Google Scholar 

  26. C. Jin, G. Wang, X. Yang, W. Zhu, Y. Yang, Tetrahedron Lett., 2018, 59, 2042; DOI: https://doi.org/10.1016/j.tetlet.2018.04.034.

    Article  CAS  Google Scholar 

  27. A. R. Dick, K. L. Hull, M. S. Sanford, J. Am. Chem. Soc., 2004, 126, 2300; DOI: https://doi.org/10.1021/ja031543m.

    Article  CAS  PubMed  Google Scholar 

  28. D. C. Powers, M. A. L. Geibel, J. E. M. N. Klein, T. Ritter, J. Am. Chem. Soc., 2009, 131, 17050; DOI: https://doi.org/10.1021/ja906935c.

    Article  CAS  PubMed  Google Scholar 

  29. J. M. Racowski, A. R. Dick, M. S. Sanford, J. Am. Chem. Soc., 2009, 131, 10974; DOI: https://doi.org/10.1021/ja9014474.

    Article  CAS  PubMed  Google Scholar 

  30. X. F. Hou, Y.-N. Wang, I. Göttker-Schnetmann, Organometallics, 2011, 30, 6053; DOI: https://doi.org/10.1021/om200484g.

    Article  CAS  Google Scholar 

  31. A. Flores-Gaspar, Á. Gutiérrez-Bonet, R. Martin, Org. Lett., 2012, 14, 5234; DOI: https://doi.org/10.1021/ol3023819.

    Article  CAS  PubMed  Google Scholar 

  32. F. Tato, A. García-Domínguez, D. J. Cárdenas, Organometallics, 2013, 32, 7487; DOI: https://doi.org/10.1021/om400981x.

    Article  CAS  Google Scholar 

  33. S. P. Desai, M. Mondal, J. Choudhury, Organometallics, 2015, 34, 2731; DOI: https://doi.org/10.1021/om501163m.

    Article  CAS  Google Scholar 

  34. E. Bolbat, O. F. Wendt, Eur. J. Org. Chem., 2016, 2016, 3395; DOI: https://doi.org/10.1002/ejoc.201600322.

    Article  CAS  Google Scholar 

  35. M. H. Majeed, P. Shayesteh, L. R. Wallenberg, A. R. Persson, N. Johansson, L. Ye, J. Schnadt, O. F. Wendt, Chem.—Eur. J., 2017, 23, 8457; DOI: https://doi.org/10.1002/chem.201700777.

    Article  CAS  PubMed  Google Scholar 

  36. M. H. Majeed, P. Shayesteh, A. R. Persson, L. R. Wallenberg, J. Schnadt, O. F. Wendt, Eur. J. Inorg. Chem., 2018, 2018, 4742; DOI: https://doi.org/10.1002/ejic.201800978.

    Article  CAS  Google Scholar 

  37. N. Yuan, M. H. Majeed, É. G. Bajnóczi, A. R. Persson, L. R. Wallenberg, A. K. Inge, N. Heidenreich, N. Stock, X. Zou, O. F. Wendt, I. Persson, Catal. Sci. Technol., 2019, 9, 2025; DOI: https://doi.org/10.1039/C8CY02430H.

    Article  CAS  Google Scholar 

  38. V. M. Chernyshev, A. V. Astakhov, I. E. Chikunov, R. V. Tyurin, D. B. Eremin, G. S. Ranny, V. N. Khrustalev, V. P. Ananikov, ACS Catal., 2019, 9, 2984; DOI: https://doi.org/10.1021/acscatal.8b03683.

    Article  CAS  Google Scholar 

  39. K. E. Shepelenko, S. B. Soliev, A. S. Galushko, V. M. Chernyshev, V. P. Ananikov, Inorg. Chem. Front., 2021, 8, 1511; DOI: https://doi.org/10.1039/D0QI01411G.

    Article  CAS  Google Scholar 

  40. O. N. Gorunova, I. M. Novitskiy, Y. K. Grishin, I. P. Gloriozov, V. A. Roznyatovsky, V. N. Khrustalev, K. A. Kochetkov, V. V. Dunina, Organometallics, 2018, 37, 2842; DOI: https://doi.org/10.1021/acs.organomet.8b00363.

    Article  CAS  Google Scholar 

  41. O. V. Khazipov, M. A. Shevchenko, A. Y. Chernenko, A. V. Astakhov, D. V. Pasyukov, D. B. Eremin, Y. V. Zubavichus, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Organometallics, 2018, 37, 1483; DOI: https://doi.org/10.1021/acs.organomet.8b00124.

    Article  CAS  Google Scholar 

  42. A. V. Astakhov, S. B. Soliev, E. G. Gordeev, V. M. Chernyshev, V. P. Ananikov, Dalton Trans., 2019, 48, 17052; DOI: https://doi.org/10.1039/C9DT03266E.

    Article  CAS  PubMed  Google Scholar 

  43. O. V. Khazipov, M. A. Shevchenko, D. V. Pasyukov, A. Y. Chernenko, A. V. Astakhov, V. A. Tafeenko, V. M. Chernyshev, V. P. Ananikov, Catal. Sci. Technol., 2020, 10, 1228; DOI: https://doi.org/10.1039/C9CY02041A.

    Article  CAS  Google Scholar 

  44. V. M. Chernyshev, E. A. Denisova, D. B. Eremin, V. P. Ananikov, Chem. Sci., 2020, 11, 6957; DOI: https://doi.org/10.1039/D0SC02629H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. S. B. Soliev, A. V. Astakhov, D. V. Pasyukov, V. M. Chernyshev, Russ. Chem. Bull., 2020, 69, 683; DOI: https://doi.org/10.1007/s11172-020-2818-3.

    Article  CAS  Google Scholar 

  46. A. Y. Chernenko, A. V. Astakhov, V. V. Kutyrev, E. G. Gordeev, J. V. Burykina, M. E. Minyaev, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Inorg. Chem. Front., 2021, 8, 3382; DOI: https://doi.org/10.1039/d1qi00453k.

    Article  CAS  Google Scholar 

  47. A. V. Astakhov, S. B. Soliev, V. M. Chernyshev, Russ. Chem. Bull., 2020, 69, 2073; DOI: https://doi.org/10.1007/s11172-020-3002-5.

    Article  CAS  Google Scholar 

  48. I. E. Chikunov, G. S. Ranny, A. V. Astakhov, V. A. Tafeenko, V. M. Chernyshev, Russ. Chem. Bull., 2018, 67, 2003; DOI: https://doi.org/10.1007/s11172-018-2321-2.

    Article  CAS  Google Scholar 

  49. A. Y. Chernenko, A. V. Astakhov, D. V. Pasyukov, P. V. Dorovatovskii, Y. V. Zubavichus, V. N. Khrustalev, V. M. Chernyshev, Russ. Chem. Bull., 2018, 67, 79; DOI: https://doi.org/10.1007/s11172-018-2040-8.

    Article  CAS  Google Scholar 

  50. V. A. Glushkov, D. N. Babentzev, M. V. Dmitriev, I. A. Borisova, M. S. Denisov, Russ. Chem. Bull., 2021, 70, 122; DOI: https://doi.org/10.1007/s11172-021-3065-y.

    Article  CAS  Google Scholar 

  51. A. Y. Chernenko, D. V. Pasyukov, A. V. Astakhov, V. A. Tafeenko, V. M. Chernyshev, Russ. Chem. Bull., 2018, 67, 1196; DOI: https://doi.org/10.1007/s11172-018-2201-9.

    Article  CAS  Google Scholar 

  52. V. M. Chernyshev, O. V. Khazipov, M. A. Shevchenko, A. Y. Chernenko, A. V. Astakhov, D. B. Eremin, D. V. Pasyukov, A. S. Kashin, V. P. Ananikov, Chem. Sci., 2018, 9, 5564; DOI: https://doi.org/10.1039/C8SC01353E.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. A. V. Astakhov, O. V. Khazipov, A. Y. Chernenko, D. V. Pasyukov, A. S. Kashin, E. G. Gordeev, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Organometallics, 2017, 36, 1981; DOI: https://doi.org/10.1021/acs.organomet.7b00184.

    Article  CAS  Google Scholar 

  54. M. S. Denisov, M. V. Dmitriev, A. A. Gorbunov, V. A. Glushkov, Russ. Chem. Bull., 2019, 68, 2039; DOI: https://doi.org/10.1007/s11172-019-2664-3.

    Article  CAS  Google Scholar 

  55. M. A. Shevchenko, Y. N. Tkachenko, A. V. Astakhov, O. V. Khazipov, R. V. Tyurin, D. V. Pasyukov, V. A. Tafeenko, O. A. Kravchenko, V. M. Chernyshev, Russ. Chem. Bull., 2018, 67, 1684; DOI: https://doi.org/10.1007/s11172-018-2277-2.

    Article  CAS  Google Scholar 

  56. C. Chen, F.-S. Liu, M. Szostak, Chem.—Eur. J., 2021, 27, 4478; DOI: https://doi.org/10.1002/chem.202003923.

    Article  CAS  PubMed  Google Scholar 

  57. P. P. Nair, A. Jayaraj, C. A. Swamy, ChemistrySelect, 2022, 7, e202103517; DOI: https://doi.org/10.1002/slct.202103517.

    Article  CAS  Google Scholar 

  58. S. M. P. Vanden Broeck, F. Nahra, C. S. J. Cazin, Inorganics, 2019, 7, 78; DOI: https://doi.org/10.3390/inorganics7060078.

    Article  CAS  Google Scholar 

  59. D. V. Pasyukov, A. Yu. Chernenko, I. V. Lavrentev, V. A. Baidikova, M. E. Minyaev, O. A. Starovoitova, V. M. Chernyshev, Russ. Chem. Bull., 2022, 71, 993; DOI: https://doi.org/10.1007/s11172-022-3501-7.

    Article  CAS  Google Scholar 

  60. V. M. Chernyshev, O. V. Khazipov, D. B. Eremin, E. A. Denisova, V. P. Ananikov, Coord. Chem. Rev., 2021, 437, 213860; DOI: https://doi.org/10.1016/j.ccr.2021.213860.

    Article  CAS  Google Scholar 

  61. M. H. Emmert, A. K. Cook, Y. J. Xie, M. S. Sanford, Angew. Chem., Int. Ed., 2011, 50, 9409; DOI: https://doi.org/10.1002/anie.201103327.

    Article  CAS  Google Scholar 

  62. N. R. Babij, E. O. McCusker, G. T. Whiteker, B. Canturk, N. Choy, L. C. Creemer, C. V. D. Amicis, N. M. Hewlett, P. L. Johnson, J. A. Knobelsdorf, F. Li, B. A. Lorsbach, B. M. Nugent, S. J. Ryan, M. R. Smith, Q. Yang, Org. Process Res. Dev., 2016, 20, 661; DOI: https://doi.org/10.1021/acs.oprd.5b00417.

    Article  CAS  Google Scholar 

  63. A. K. Cook, M. S. Sanford, J. Am. Chem. Soc., 2015, 137, 3109; DOI: https://doi.org/10.1021/jacs.5b00238.

    Article  CAS  PubMed  Google Scholar 

  64. M. S. Yusubov, G. A. Zholobova, I. L. Filimonova, K.-W. Chi, Russ. Chem. Bull., 2004, 53, 1735; DOI: https://doi.org/10.1007/s11172-005-0027-8.

    Article  CAS  Google Scholar 

  65. S. Gardner, T. Kawamoto, D. P. Curran, J. Org. Chem., 2015, 80, 9794; DOI: https://doi.org/10.1021/acs.joc.5b01682.

    Article  CAS  PubMed  Google Scholar 

  66. T. Rehm, M. Rothemund, A. Bär, T. Dietel, R. Kempe, H. Kostrhunova, V. Brabec, J. Kasparkova, R. Schobert, Dalton Trans., 2018, 47, 17367; DOI: https://doi.org/10.1039/C8DT03360A.

    Article  CAS  PubMed  Google Scholar 

  67. K. T. Greeson, N. G. Hall, N. D. Redeker, J. C. Marcischak, L. V. Gilmore, J. A. Boatz, T. C. Le, J. R. Alston, A. J. Guenthner, K. B. Ghiassi, J. Mol. Liq., 2018, 265, 701; DOI: https://doi.org/10.1016/j.molliq.2018.06.016.

    Article  CAS  Google Scholar 

  68. C. J. Adams, M. Lusi, E. M. Mutambi, A. Guy Orpen, Chem. Commun., 2015, 51, 9632; DOI: https://doi.org/10.1039/C5CC02924D.

    Article  CAS  Google Scholar 

  69. R. Kore, R. Srivastava, J. Mol. Catal. A: Chem., 2011, 345, 117; DOI: https://doi.org/10.1016/j.molcata.2011.06.003.

    Article  CAS  Google Scholar 

  70. A. J. Arduengo, R. Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich, W. J. Marshall, M. Unverzagt, Tetrahedron, 1999, 55, 14523; DOI: https://doi.org/10.1016/S0040-4020(99)00927-8.

    Article  CAS  Google Scholar 

  71. A. J. Arduengo, F. Davidson, H. V. R. Dias, J. R. Goerlich, D. Khasnis, W. J. Marshall, T. K. Prakasha, J. Am. Chem. Soc., 1997, 119, 12742; DOI: https://doi.org/10.1021/ja973241o.

    Article  CAS  Google Scholar 

  72. G. Grieco, O. Blacque, H. Berke, Beilstein J. Org. Chem., 2015, 11, 1656; DOI: https://doi.org/10.3762/bjoc.11.182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. M. Pompeo, R. D. J. Froese, N. Hadei, M. G. Organ, Angew. Chem., Int. Ed., 2012, 51, 11354; DOI: https://doi.org/10.1002/anie.201205747.

    Article  CAS  Google Scholar 

  74. G. A. Grasa, M. S. Viciu, J. Huang, S. P. Nolan, J. Org. Chem., 2001, 66, 7729; DOI: https://doi.org/10.1021/jo010613+.

    Article  CAS  PubMed  Google Scholar 

  75. L. G. Pezük, B. Şen, F. E. Hahn, H. Türkmen, Organometallics, 2019, 38, 593; DOI: https://doi.org/10.1021/acs.organomet.8b00882.

    Article  CAS  Google Scholar 

  76. C. J. O’Brien, E. A. B. Kantchev, C. Valente, N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson, M. G. Organ, Chem.Eur. J., 2006, 12, 4743; DOI: https://doi.org/10.1002/chem.200600251.

    Article  PubMed  CAS  Google Scholar 

  77. Y. Shi, Z. Cai, Y. Peng, Z. Shi, G. Pang, J. Chem. Res., 2011, 35, 161; DOI: https://doi.org/10.3184/174751911X12983924042406.

    Article  CAS  Google Scholar 

  78. K.-A. Green, P. T. Maragh, K. Abdur-Rashid, A. J. Lough, T. P. Dasgupta, Eur. J. Inorg. Chem., 2014, 2014, 3600; DOI: https://doi.org/10.1002/ejic.201402317.

    Article  CAS  Google Scholar 

  79. E. Lee, J. Lee, D. V. Yandulov, Eur. J. Inorg. Chem., 2017, 2017, 2058; DOI: https://doi.org/10.1002/ejic.201700034.

    Article  CAS  Google Scholar 

  80. A. V. Astakhov, O. V. Khazipov, E. S. Degtyareva, V. N. Khrustalev, V. M. Chernyshev, V. P. Ananikov, Organometallics, 2015, 34, 5759; DOI: https://doi.org/10.1021/acs.organomet.5b00856.

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to Prof. V. M. Chernyshev and the Academician of the Russian Academy of Sciences V. P. Ananikov for a fruitful discussion of the results reported herein and valuable comments, as well as to the Shared Research Center “Nanotechnologies” at the M. I. Platov South-Russian State Polytechnic University and the Shared Research Center at the N. D. Zelinskiy Institute of Organic Chemistry of the Russian Academy of Sciences for conducting analytical experiments.

This work was financially supported by the Russian Science Foundation (Project No. 19-73-10100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Astakhov.

Additional information

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1247–1256, June, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnokov, V.V., Shevchenko, M.A. & Astakhov, A.V. A study of the reactivity and transformations of Pd/NHC complexes in the reaction of oxidative C−H acetoxylation. Russ Chem Bull 71, 1247–1256 (2022). https://doi.org/10.1007/s11172-022-3526-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3526-y

Key words

Navigation