Skip to main content
Log in

Electronic structure and photoelectron spectra of fluorinated ZnII thioacetylacetonate complexes

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The electronic structure of ZnII β-thioacetylacetonate complexes, such as ZnII complexes of thio-substituted acetylacetonate (Zn(Sacac)2) and its trifluoro-substituted analogs with aromatic substituents in the beta positions, Zn(tfSac)2, Zn(tfbzOEtSac)2, and Zn[tfbz(OMe)3Sac]2, was studied by HeI ultraviolet photoelectron spectroscopy (radiation with energy hv = 21.22 eV) and the quantum chemical methods OVGF (outer-valence Green’s function approximation) and DFT (density functional theory). The band assignments were made for the UV spectra of these complexes. The second derivative spectra were obtained to increase the informativenes of the spectra and provide the unequivocal interpretation. In order to study the electronic effects caused by the replacement of CH3 by CF3 in Zn(Sacac)2, the electronic structures of Zn(Sacac)2 and Zn(Sbzac)2 were additionally calculated and analyzed. In Zn[tfbz(OMe)3Sac]2, the CH3O groups of 3,4,5-trimethoxybenzene are rotated in different directions with respect to the plane of the phenyl ring, which leads to significant changes in the electronic structure and the spectrum of the complex compared to Zn(tfbzOEtSac)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Problemy khimii i primenenie β-diketonatov metallov [Problems of Chemistry and Application of Metal β-Diketonates], Ed. V. I. Spitsyn, Nauka, Moscow, 1982, pp. 982 (in Russi

    Google Scholar 

  2. Teoreticheskaya i prikladnaya khimiya β-diketonatov metallov [Theoretical and Applied Chemistry of Metal β-Diketonates], Eds. V. I. Spitsyn, L. I. Martynenko, Moscow, Nauka, 1985, pp. 272 (in Russian).

    Google Scholar 

  3. N. S. Rukk, L. G. Kuzmina, G. A. Davydova, G. A. Buzanov, S. K. Belus, E. I. Kozhukhova, V. M. Retivov, T. V. Ivanova, V. N. Krasnoperova, B. M. Bolotin, Russ. Chem. Bull., 2020, 69, 1394–1400; DOI: https://doi.org/10.1007/s11172-020-2914-4.

    Article  CAS  Google Scholar 

  4. J. Sheikh, H. Juneja, V. Ingle, P. Ali, T. B. Hadda, J. Saudi Chem. Soc., 2013, 17, 269–276; DOI: https://doi.org/10.1016/j.jscs.2011.04.004.

    Article  CAS  Google Scholar 

  5. I. I. Roslan, K. H. Ng, G. K. Chuah, S. Jaenicke, Beilstein J. Ogan. Chem., 2017, 13, 2739–2750; DOI: https://doi.org/10.3762/bjoc.13.270.

    Article  CAS  Google Scholar 

  6. R. E. Malekshah, M. Alehi, M. Kubicki, A. Khaleghian, J. Molecul. Struct., 2017, 1150, 155–165; DOI: https://doi.org/10.1016/j.molstruc.2017.08.079.

    Article  CAS  Google Scholar 

  7. J. J. Bergkamp, S. Decurtins, S. X. Liu, Chem. Soc. Rev., 2015, 44, 863–874; DOI: https://doi.org/10.1039/C4CS00255E.

    Article  CAS  PubMed  Google Scholar 

  8. I. R. Subbotina, D. V. Barsukov, A. O. Terent’ev, I. B. Krylov, Russ. Chem. Bull., 2021, 70, 340–349; DOI: https://doi.org/10.1007/s11172-021-3091-9.

    Article  CAS  Google Scholar 

  9. O. V. Mikhailov, D. V. Chachkov, Russ. Chem. Bull., 2021, 70, 1438–1445; DOI: https://doi.org/10.1007/s11172-021-3237-9.

    Article  CAS  Google Scholar 

  10. O. V. Mikhailov, D. V. Chachkov, Russ. Chem. Bull., 2020, 69, 893–898; DOI: https://doi.org/10.1007/s11172-020-2846-z.

    Article  CAS  Google Scholar 

  11. S. Hüfner, Photoelectron Spectroscopy: Principles and Applications, Springer Science & Business Media, 2013.

  12. S. Kitagawa, I. Morishima, K. Yoshikawa, Polyhedron, 1983, 2, 43–46.

    Article  CAS  Google Scholar 

  13. H. G. Brittain, R. L. Disch, J. Electron Spectr. Relat. Phenom., 1975, 7, 475–483; DOI: https://doi.org/10.1016/0368-2048(79)85009-4.

    Article  CAS  Google Scholar 

  14. A. Yu. Ustinov, V. V. Korochentzev, V. I. Vovna, J. Electron Spectr. Relat. Phenom., 1998, 88, 119–124; DOI: https://doi.org/10.1016/s0368-2048(97)00259-4.

    Article  Google Scholar 

  15. V. I. Vovna, I. B. Lvov, S. N. Slabzhennikov, A. Yu. Ustinov, J. Electron Spectr. Relat. Phenom., 1998, 88, 109–117; DOI: https://doi.org/10.1016/s0368-2048(97)00258-2.

    Article  Google Scholar 

  16. A. Yu. Ustinov, V. V. Korochencev, V. I. Vovna, D. T. Haworth, M. Das, J. Electron Spectr. Relat. Phenom., 2003, 128, 51–57; DOI: https://doi.org/10.1016/S0368-2048(02)00206-2.

    Article  CAS  Google Scholar 

  17. V. I. Vovna, V. V. Korochentsev, A. A. Dotsenko, Russ. J. Coord. Chem., 2012, 38, 36–43; DOI: https://doi.org/10.1134/S1070328411120086.

    Article  CAS  Google Scholar 

  18. A. A. Komissarov, O. L. Shcheka, S. A. Tikhonov, V. V. Korochentsev, I. S. Samoilov, V. I. Vovna, J. Molecul. Struct., 2020, 1204, 127540; DOI: https://doi.org/10.1016/j.molstruc.2019.127540.

    Article  CAS  Google Scholar 

  19. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, D. J. Fox, Gaussian 16, 2016.

  20. V. I. Vovna, A. S. Chekh, V. V. Korochentsev, S. A. Tikhonov, I. S. Samoilov, J. Molec. Struct., 2021, 1223, 128815; DOI: https://doi.org/10.1016/j.molstruc.2020.128815.

    Article  CAS  Google Scholar 

  21. A. V. Shurygin, V. I. Vovna, V. V. Korochentsev, A. G. Mirochnik, V. I. Sergienko, J. Struct. Chem., 2019, 60, 1925–1939; DOI: https://doi.org/10.1134/S0022476619120084.

    Article  CAS  Google Scholar 

  22. W. Von Niessen, J. Schirmer, L. S. Cederbaum, Computer Physics Reports, 1984, 1, 57–125.

    Article  CAS  Google Scholar 

  23. V. I. Vovna, V. V. Korochentsev, A. I. Cherednichenko, A. V. Shurygin, Russ. Chem. Bull., 2015, 64, 1701–1712; DOI: https://doi.org/10.1007/s11172-015-1066-4.

    Article  CAS  Google Scholar 

  24. V. I. Vovna, S. A. Tikhonov, I. B. L’vov, Russ. J. Phys. Chem. A, 2011, 85, 1942–1948; DOI: https://doi.org/10.1134/S0036024413040304.

    Article  CAS  Google Scholar 

  25. V. I. Vovna, S. A. Tikhonov, I. B. Lvov, Russ. J. Phys. Chem. A, 2013, 87, 688–693; DOI: https://doi.org/10.1134/S0036024413040304.

    Article  CAS  Google Scholar 

  26. V. I. Vovna, S. A. Tikhonov, I. B. Lvov, I. S. Osmushko, I. V. Svistunova, O. L. Shcheka, J. Elec. Spectrosc. Rel. Phenomena, 2014, 197, 43–49; DOI: https://doi.org/10.1016/j.elspec.2014.08.009.

    Article  CAS  Google Scholar 

  27. V. I. Vovna, M. V. Kazachek, I. B. L’vov, Optics and Spectroscopy, 2012, 112, 497–505; DOI: https://doi.org/10.1134/S0030400X12030228.

    Article  CAS  Google Scholar 

  28. S. A. Tikhonov, V. I. Vovna, N. A. Gelfand, I. S. Osmushko, E. V. Fedorenko, A. G. Mirochnik, J. Phys. Chem. A, 2016, 120, 7361–7369; DOI: https://doi.org/10.1021/acs.jpca.6b07242.

    Article  CAS  PubMed  Google Scholar 

  29. V. I. Vovna, V. V. Korochentsev, A. A. Komissarov, I. B. L’vov, N. S. Myshakina, J. Molecul. Struct., 2015, 1099, 579–587; DOI: https://doi.org/10.1016/j.molstruc.2015.07.014.

    Article  CAS  Google Scholar 

  30. A. A. Komissarov, O. L. Shcheka, A. A. Dotsenko, V. A. Yashin, V. I. Vovna, Comp. Theoret. Chem., 2017, 1119, 26–31; DOI: https://doi.org/10.1016/j.comptc.2017.09.004.

    Article  CAS  Google Scholar 

  31. V. I. Vovna, I. S. Osmushko, J. Struct. Chem., 2004, 45, 617–625; DOI: https://doi.org/10.1007/s10947-005-0036-3.

    Article  CAS  Google Scholar 

  32. A. V. Shurygin, V. I. Vovna, V. V. Korochentsev, A. G. Mirochnik, P. A. Zhikhareva, V. I. Sergienko, J. Molec. Struct., 2020, 1205, 127638; DOI: https://doi.org/10.1016/j.molstruc.2019.127638.

    Article  CAS  Google Scholar 

  33. V. V. Korochentsev, V. I. Vovna, I. V. Kalinovskaya, A. A. Komissarov, A. V. Shurygin, V. I. Sergienko, J. Struct. Chem., 2014, 55, 1057–1066; DOI: https://doi.org/10.1134/S0022476614060080.

    Article  CAS  Google Scholar 

  34. N. V. Belova, V. V. Zhukova, G. V. Girichev, Comput. Theoret. Chem., 2011, 967, 199–205; DOI: https://doi.org/10.1016/j.comptc.2011.04.017.

    Article  CAS  Google Scholar 

  35. N. V. Belova, H. Oberhammer, N. H. Trang, G. V. Girichev, J. Organ. Chem., 2014, 79, 5412–5419; DOI: https://doi.org/10.1016/j.molstruc.2012.03.065.

    Article  CAS  Google Scholar 

  36. N. V. Belova, V. V. Sliznev, H. Oberhammer, G. V. Girichev, J. Molecul. Structure, 2010, 978, No. 1–3, 282–293; DOI: https://doi.org/10.1016/j.molstruc.2010.02.070.

    Article  CAS  Google Scholar 

  37. M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, K. A. Lyssenko, Science, 2017, 355, 49–52; DOI: https://doi.org/10.1126/science.aah5975.

    Article  CAS  PubMed  Google Scholar 

  38. K. R. Brorsen, Y. Yang, M. V. Pak, S. Hammes-Schiffer, J. Phys. Chem. Letters, 2017, 8, 2076–2081; DOI: https://doi.org/10.1021/acs.jpclett.7b00774.

    Article  CAS  Google Scholar 

  39. T. Yanai, D. P. Tw, N. C. Handy, Chemical Physics Letters, 2004, 393, No. 1–3, 51–57; DOI: https://doi.org/10.1016/j.cplett.2004.06.011.

    Article  CAS  Google Scholar 

  40. A. A. Granovsky, Firefly, Version 8.2.0, 2019.

  41. K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, T. L. Windus, J. Chem. Inform. Model., 2007, 47, 1045–1052; DOI: https://doi.org/10.1021/ci600510j.

    Article  CAS  Google Scholar 

  42. C. J. Cramer, D. G. Truhlar, Physic. Chem. Chemical Physics, 2009, 11, 10757–10816; DOI: https://doi.org/10.1039/b907148b.

    Article  CAS  Google Scholar 

  43. V. I. Vovna, V. I. Kharchenko, A. I. Cherednichenko, V. V. Gorchakov, J. Struct. Chem., 1989, 30, 483–485; DOI: https://doi.org/10.1007/BF00751917.

    Article  Google Scholar 

  44. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347–1363.

    Article  CAS  Google Scholar 

  45. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Gaussian 16, 2016, Revision A, 3.

Download references

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Project Nos 0657-2020-0003 and 075-15-2021-607) in the form of subsidies from the Federal budget allocated for state support of scientific research conducted under supervision of leading scientists in Russian institutions of higher education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Korochentsev.

Additional information

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1209–1223, June, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekh, A.S., Korochentsev, V.V., Vovna, V.I. et al. Electronic structure and photoelectron spectra of fluorinated ZnII thioacetylacetonate complexes. Russ Chem Bull 71, 1209–1223 (2022). https://doi.org/10.1007/s11172-022-3522-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3522-2

Key words

Navigation