Skip to main content
Log in

ZSM-5 and BEA zeolites modified with Pd nanoparticles by laser electrodispersion. The structure and catalytic activity in CO and CH4 oxidation

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Small amounts of nearly 2-nm Pd nanoparticles (0.01–0.03 wt.%) were deposited onto the surface of the ZSM-5 and BEA zeolites by laser electrodispersion. Materials thus prepared were studied by low-temperature nitrogen adsorption, thermo-programmed desorption of ammonia, transmission electron microscopy, and X-ray photoelectron spectroscopy. They were also tested in total catalytic oxidation of CO and CH4. It was demonstrated that the oxidation state of Pd and the character of distribution of isolated metal particles or their aggregates over the external surface or in the bulk of the zeolite is affected by the palladium content and by the zeolite nature. The activity of the Pd/ZSM-5 catalysts decreases with increasing Si/Al ratio of the zeolite and depends on the oxidation state of the metal. In the most active catalysts 65–75% of Pd occur as metal, whereas 35–25% make up oxidized palladium. The oxidation of carbon monoxide on the ZSM-5 catalyst (Si/Al = 15, 0.01 wt.% Pd) whose surface is uniformly covered with isolated Pd nanoparticles begins at 90 °C, which is 70–80 °C lower compared to CO oxidation on other Pd-modified ZSM-5 and BEA zeolites containing aggregates of palladium nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Haneda, M. Todo, Y. Nakamura, M. Hattori, Catal. Today, 2017, 281, 447; DOI: https://doi.org/10.1016/j.cattod.2016.05.025.

    Article  CAS  Google Scholar 

  2. A. Satsuma, K. Osaki, M. Yanagihara, J. Ohyama, K. Shimizu, Appl. Catal., B., 2013, 132–133, 511; DOI: https://doi.org/10.1016/j.apcatb.2012.12.025.

    Article  CAS  Google Scholar 

  3. H.-J. Freund, G. Meijer, M. Scheffler, R. Schlögl, M. Wolf, Angew. Chem., Int. Ed., 2011, 50, 10064; DOI: https://doi.org/10.1002/anie.201101378.

    Article  CAS  Google Scholar 

  4. J. Chen, Y. Wu, W. Hu, P. Qu, G. Zhang, P. Granger, L. Zhong, Y. Chen, Appl. Catal., B, 2020, 264, 118475; DOI: https://doi.org/10.1016/j.apcatb.2019.118475.

    Article  CAS  Google Scholar 

  5. J. Lin, X. Wang, T. Zhang, Chin. J. Catal., 2016, 37, 1805; DOI: https://doi.org/10.1016/S1872-2067(16)62513-5.

    Article  CAS  Google Scholar 

  6. E. K. Dann, E. K. Gibson, C. R. A. Catlow, V. Celorrio, P. Collier, T. Eralp, M. Amboage, C. Hardacre, C. Stere, A. Kroner, A. Raj, S. Rogers, A. Goguet, P. P. Wells, J. Catal., 2019, 373, 201; DOI: https://doi.org/10.1016/j.jcat.2019.03.037.

    Article  CAS  Google Scholar 

  7. J. Nilsson, P.-A. Carlsson, N. M. Martin, E. C. Adams, G. Agostini, H. Grönbeck, M. Skoglundh, J. Catal., 2017, 356, 237; DOI: https://doi.org/10.1016/j.jcat.2017.10.018.

    Article  CAS  Google Scholar 

  8. H. Kondoh, R. Toyoshima, Y. Monya, M. Yoshida, K. Mase, K. Amemiya, B. S. Mun, Catal. Today, 2016, 260, 14; DOI: https://doi.org/10.1016/j.cattod.2015.05.016.

    Article  CAS  Google Scholar 

  9. Y. Soni, S. Pradhan, M. K. Bamnia, A. K. Yadav, S. N. Jha, D. Bhattacharyya, T. S. Khan, M. A. Haider, C. P. Vinod, Appl. Catal., B, 2020, 272, 118934; DOI: https://doi.org/10.1016/j.apcatb.2020.118934.

    Article  CAS  Google Scholar 

  10. A. Yu. Stakheev, A. M. Batkin, N. S. Telegina, G. O. Bragina, V. I. Zaikovsky, I. P. Prosvirin, A. K. Khudorozhkov, V. I. Bukhtiyarov, Top. Catal., 2013, 56, 306; DOI: https://doi.org/10.1007/s11244-013-9971-y.

    Article  CAS  Google Scholar 

  11. M. Benkhaled, S. Morin, Ch. Pichon, C. Thomazeau, C. Verdon, D. Uzio, Appl. Catal., A, 2006, 312, 1; DOI: https://doi.org/10.1016/j.apcata.2006.06.011.

    Article  CAS  Google Scholar 

  12. E. V. Golubina, T. N. Rostovshchikova, E. S. Lokteva, K. I. Maslakov, S. A. Nikolaev, M. I. Shilina, S. A. Gurevich, V. M. Kozhevin, D. A. Yavsin, E. M. Slavinskaya, Appl. Surf. Sci., 2021, 536, 147656; DOI: https://doi.org/10.1016/j.apsusc.2020.147656.

    Article  CAS  Google Scholar 

  13. G. Busca, E. Finocchio, V. S. Escribano, Appl. Catal., B, 2012, 113–114, 172; DOI: https://doi.org/10.1016/j.apcatb.2011.11.035.

    Article  CAS  Google Scholar 

  14. A. A. Vedygin, A. M. Volodin, R. M. Kenzhin, V. O. Stoyanovskii, V. A. Rogov, V. V. Kriventsov, I. V. Mishakov, Catal. Today, 2018, 307, 102; DOI: https://doi.org/10.1016/j.cattod.2017.01.033.

    Article  CAS  Google Scholar 

  15. L. S. Kibis, A. I. Stadnichenko, S. V. Koscheev, V. I. Zaikovskii, A. I. Boronin, J. Phys. Chem., 2012, 116, 19342; DOI: https://doi.org/10.1021/jp305166k.

    CAS  Google Scholar 

  16. M. Gao, Z. Gong, X. Weng, W. Shang, Y. Chai, W. Dai, G. Wu, N. Guan, L. Li, Chin. J. Catal., 2021, 42, 1689; DOI: https://doi.org/10.1016/S1872-2067(20)63775-5.

    Article  CAS  Google Scholar 

  17. L. Zhang, J. Chen, X. Guo, S. Yin, M. Zhang, Z. Rui, Catal. Today, 2021, 376, 119; DOI: https://doi.org/10.1016/j.cattod.2020.07.005.

    Article  CAS  Google Scholar 

  18. I. Friberg, A. H. Clark, P. H. Ho, N. Sadokhina, G. J. Smales, J. Woo, X. Auvray, D. Ferri, M. Nachtegaal, O. Krocher, L. Olsson, Catal. Today, 2021, 382, 3; DOI: https://doi.org/10.1016/j.cattod.2020.11.026.

    Article  CAS  Google Scholar 

  19. H. Hasseiniamoli, G. Bryant, E. M. Kennedy, K. Mathisen, D. Nichoison, G. Sankar, A. Setiwan, M. Stockenhuber, ACS Catal., 2018, 8, 5852; DOI: https://doi.org/10.1021/acscatal.7b04462.

    Article  CAS  Google Scholar 

  20. Y. Lou, J. W. Hu, Q. Dai, L. Wang, W. Zhan, Y. Guo, X.-M. Cao, P. Hu, G. Lu, ACS Catal., 2016, 6, 8127; DOI: https://doi.org/10.1021/acscatal.6b01801.

    Article  CAS  Google Scholar 

  21. Y. Xie, L. Zhang, Y. Jiang, S. Han, L. Wang, X. Meng, F.-S. Xiao, Catal. Today, 2021, 364, 16; DOI: https://doi.org/10.1016/j.cattod.2019.11.030.

    Article  CAS  Google Scholar 

  22. P. Losch, W. Huang, O. Vozniuk, E. D. Goodman, W. Schmidt, M. Cargnello, ACS Catal., 2019, 9, 4742; DOI: https://doi.org/10.1021/acscatal.9b00596.

    Article  CAS  Google Scholar 

  23. R. C. Forsythe, C. P. Cox, M. K. Wilsey, A. M. Müller, Chem. Rev., 2021, 121, 7568; DOI: https://doi.org/10.1021/acs.chemrev.0c01069.

    Article  CAS  PubMed  Google Scholar 

  24. T. N. Rostovshchikova, E. S. Lokteva, M. I. Shilina, E. V. Golubina, K. I. Maslakov, I. N. Krotova, A. A. Bryzhin, I. G. Tarkhanova, O. V. Udalova, V. M. Kozhevin, D. A. Yavsin, S. A. Gurevich, Russ. J. Phys. Chem. A, 2021, 95, 451; DOI: https://doi.org/10.1134/S0036024421030171.

    Article  CAS  Google Scholar 

  25. A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, E. S. Lokteva, T. N. Rostovshchikova, S. Yu. Sarvadii, B. R. Shub, D. A. Yavsin, Russ. Chem. Bull., 2015, 64, 2337; DOI: https://doi.org/10.1007/s11172-015-1161-6.

    Article  CAS  Google Scholar 

  26. T. N. Rostovshchikova, M. I. Shilina, E. V. Golubina, E. S. Lokteva, I. N. Krotova, S. A. Nikolaev, K. I. Maslakov, D. A. Yavsin, Russ. Chem. Bull., 2015, 64, 812; DOI: https://doi.org/10.1007/s11172-015-0938-y.

    Article  CAS  Google Scholar 

  27. A. K. Gatin, M. V. Grishin, S. A. Gurevich, N. V. Dokhlikova, A. A. Kirsankin, V. M. Kozhevin, N. N. Kolchenko, T. N. Rostovshchikova, V. A. Kharitonov, B. R. Shub, D. A. Yavsin, Russ. Chem. Bull., 2014, 63, 1696; DOI: https://doi.org/10.1007/s11172-014-0655-y.

    Article  CAS  Google Scholar 

  28. E. S. Lokteva, T. N. Rostovshchikova, S. A. Kachevskii, E. V. Golubina, V. V. Smirnov, A. Yu. Stakheev, N. S. Telegina, S. A. Gurevich, V. M. Kozhevin, D. A. Yavsin, Kinet. Catal. (Engl. Transl.), 2008, 49, 748; DOI: https://doi.org/10.1134/S0023158408050212.

    Article  CAS  Google Scholar 

  29. S. M. Nevskaya, S. A. Nikolaev, Yu. G. Noskov, T. N. Rostovshchikova, V. V. Smirnov, S. A. Gurevich, M. A. Zabelin, V. M. Kozhevin, P. A. Tret’yakov, D. A. Yavsin, A. Yu. Vasil’kov, Kinet. Catal. (Engl. Transl.), 2006, 47, 638; DOI: https://doi.org/10.1134/S0023158406040203.

    Article  CAS  Google Scholar 

  30. J. Dědeček, Z. Sobalík, B. Wichtelová, Catal. Rev., 2012, 54, 135; DOI: https://doi.org/10.1080/01614940.2012.632662.

    Article  CAS  Google Scholar 

  31. A. A. Bryzhin, E. V. Golubina, K. I. Maslakov, E. S. Lokteva, I. G. Tarkhanova, S. A. Gurevich, D. A. Yavsin, T. N. Rostovshchikova, ChemCatChem, 2020, 12, 4396; DOI: https://doi.org/10.1002/cctc.202000501.

    Article  CAS  Google Scholar 

  32. T. Pillo, R. Zimmermann, P. Steiner, S. Hüfner, J. Phys.: Condens. Matter., 1997, 9, 3987; DOI: https://doi.org/10.1088/0953-8984/9/19/018.

    CAS  Google Scholar 

  33. N. E. Kavalerskaya, E. S. Lokteva, T. N. Rostovshchikova, E. V. Golubina, K. I. Maslakov, Kinet. Catal. (Engl. Transl.), 2013, 54, 597; DOI: https://doi.org/10.1134/S0023158413050066.

    Article  CAS  Google Scholar 

  34. E. V. Golubina, E. S. Lokteva, K. I. Maslakov, T. N. Rostovshchikova, M. I. Shilina, S. A. Gurevich, V. M. Kozhevin, D. A. Yavsin, Nanotechnologies in Russia, 2017, 12, No. 1–2, 19; DOI: https://doi.org/10.1134/S1995078017010049.

    Article  CAS  Google Scholar 

  35. F. Duprat, Chem. Eng. Sci., 2002, 57, 901; DOI: https://doi.org/10.1016/S0009-2509(01)00409-2.

    Article  CAS  Google Scholar 

  36. A. D. Allian, K. Takanabe, K.L. Fujdala, X. Hao, T. J. Truex, J. Cai, C. Buda, M. Neurock, E. Iglesia, J. Am. Chem. Soc., 2011, 133, 4498; DOI: https://doi.org/10.1021/ja110073u.

    Article  CAS  PubMed  Google Scholar 

  37. T. N. Rostovshchikova, V. V. Smirnov, V. M. Kozhevin, D. A. Yavsin, S. A. Gurevich, Ross. nanotekhnologii [Nanotechnologies in Russia], 2007, 2, 47 (in Russian).

    Google Scholar 

  38. E. S. Lokteva, E. V. Golubina, Pure Appl. Chem., 2019, 91, 609; DOI: https://doi.org/10.1515/pac-2018-0715.

    Article  CAS  Google Scholar 

  39. J. Deng, W. Song, M. Jing, T. Yu, Z. Zhao, C. Xu, J. Liu, Catal. Today, 2020, 339, 210; DOI: https://doi.org/10.1016/j.cattod.2019.02.039.

    Article  CAS  Google Scholar 

  40. Z.-J. Zhao, Z. Li, Y. Cui, H. Zhu, W. F. Schneider, W. N. Delgass, F. Ribeiro, J. Greeley, J. Catal., 2017, 345, 157; DOI: https://doi.org/10.1016/j.jcat.2016.11.008.

    Article  CAS  Google Scholar 

  41. S. A. Nikolaev, E. V. Golubina, M. I. Shilina, Appl. Catal., B, 2017, 208, 116; DOI: https://doi.org/10.1016/j.apcatb.2017.02.038.

    Article  CAS  Google Scholar 

  42. M. J. Hazlett, M. Mases-Debusk, J. E. ParksII, L. F. Allard, Appl. Catal., B, 2017, 202, 404; DOI: https://doi.org/10.1016/j.apcatb.2016.09.034.

    Article  CAS  Google Scholar 

  43. J. Lee, J. Kim, Y. Kim, S. Hwang, H. Lee, C. H. Kim, D. H. Kim, Appl. Catal., B, 2020, 277, 119190; DOI: https://doi.org/10.1016/j.apcatb.2020.119190.

    Article  CAS  Google Scholar 

  44. V. P. Pakharukova, I. Y. Pakharukov, V. I. Bukhtiyarov, V. N. Parmon, Appl. Catal., A, 2014, 486, 12; DOI: https://doi.org/10.1016/j.apcata.2014.08.014.

    Article  CAS  Google Scholar 

  45. Q. Fu, T. Wagner, Surface Sci. Rep., 2007, 62, 431; DOI: https://doi.org/10.1016/j.surfrep.2007.07.001.

    Article  CAS  Google Scholar 

  46. N. Turaeva, M. L. Preuss, Catal. Commun., 2015, 65, 30; DOI: https://doi.org/10.1016/j.catcom.2015.02.022.

    Article  CAS  Google Scholar 

Download references

Funding

The catalysts were synthesized by LED within the framework of the State Assignment to the Ioff e Physico-Technical Institute, Russian Academy of Sciences (Project No. 0040-2014-0010). The physicochemical properties of materials were analyzed within the framework of the State Assignment to the Lomonosov Moscow State University (Project No. AAAA-A21- 121011590090-7). Catalytic tests were performed within the framework of the State Assignment to the Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences (Project No. 0082-2019-0011 “Fundamental Laws of Heterogeneous and Homogeneous Catalysis”). Structural studies were carried out using the equipment purchased within the framework of the Lomonosov Moscow State University Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Rostovshchikova.

Additional information

No human or animal subjects were used in this research.

The authors declare no competing interests.

Based on the materials of the XXXIII Symposium “Modern Chemical Physics” (September 24–October 4, 2021, Tuapse, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1179–1193, June, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostovshchikova, T.N., Nikolaev, S.A., Krotova, I.N. et al. ZSM-5 and BEA zeolites modified with Pd nanoparticles by laser electrodispersion. The structure and catalytic activity in CO and CH4 oxidation. Russ Chem Bull 71, 1179–1193 (2022). https://doi.org/10.1007/s11172-022-3519-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3519-x

Key words

Navigation