Skip to main content
Log in

1,2-Bis(nitroazol-1-yl)diazenes: improved methods of synthesis, determination of the enthalpies of formation, and calculations of main energy characteristics of solid composite propellants based on these compounds

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Methods for the synthesis of 1,2-bis(3,4-dinitropyrazol-1-yl)diazene (1), 1,2-bis(3,5-dinitropyrazol-1-yl)diazene (2), and 1,2-bis(3-nitro-1,2,4-triazol-1-yl)diazene (3) were improved. The standard enthalpies of formation of these compounds were determined experimentally using combustion calorimetry. The density of compound 1 was refined. The possibilities of optimal use of the synthesized diazenes as energetic fillers for solid composite propellants (SCPs) were investigated. The main energy characteristics of SCPs containing diazenes were compared with those of the corresponding propellants based on hexanitrohexaazaisowurzitane, octogen, ammonium dinitramide, and ammonium perchlorate using thermodynamic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. A. Luk’yanov, V. P. Gorelik, V. A. Tartakovskii, Russ. Chem. Bull., 1994, 43, 89; DOI: https://doi.org/10.1007/BF00699142.

    Article  Google Scholar 

  2. D. B. Lempert, G. N. Nechiporenko, S. l. Soglasnova, Comb., Explos., Shock Waves, 2009, 45, 160.

    Article  Google Scholar 

  3. A. Smirnov, D. Lempert, T. Pivina, D. Khakimov, Centr. Eur. J. Energ. Mater., 2011, 8, 233.

    CAS  Google Scholar 

  4. D. B. Lempert, G. N. Nechiporenko, G. B. Manelis, Centr. Eur. J. Energ. Mater., 2006, 3, 73.

    Google Scholar 

  5. G. N. Nechiporenko, D. B. Lempert, Zh. Khim. Fiz. [J. Chem. Phys. USSR], 1998, 17, № 10, 93 (in Russian).

    CAS  Google Scholar 

  6. A. M. Churakov, S. L. Ioffe, V. A. Tartakovsky, Mendeleev Commun., 1995, 5, 227; DOI: https://doi.org/10.1070/MC1995v005n06ABEH000539.

    Article  Google Scholar 

  7. M. S. Klenov, A. A. Guskov, O. V. Anikin, A. M. Churakov, Yu. A. Strelenko, I. V. Fedyanin, K. A. Lyssenko, V. A. Tartakovsky, Angew. Chem., Int. Ed., 2016, 55, 11472; DOI: https://doi.org/10.1002/anie.201605611.

    Article  CAS  Google Scholar 

  8. D. B. Lempert, E. M. Dorofeenko, S. I. Soglasnova, Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering, 2018, 2, 62; DOI: https://doi.org/10.25206/2588-0373-2018-2-3-58-62.

    Article  Google Scholar 

  9. H. Gao, Q. Zhang, J. M. Shreeve, J. Mater. Chem. A, 2020, 8, 4193; DOI: https://doi.org/10.1039/C9TA12704F.

    Article  CAS  Google Scholar 

  10. Y. Zhang, C. Zhou, B. Wang, Y. Zhou, K. Xu, S. Jia, F. Zhao, Propellants, Explos., Pyrotech., 2014, 39, 809; DOI: https://doi.org/10.1002/prep.201400057.

    Article  CAS  Google Scholar 

  11. L. Zhai, F. Bi, Y. Luo, N. Wang, J. Zhang, B. Wang, Sci. Rep., 2019, 9, 4321; DOI: https://doi.org/10.1038/s41598-019-39723-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. I. L. Dalinger, K. Yu. Suponitsky, T. K. Shkineva, D. B. Lempert, A. B. Sheremetev, J. Mater. Chem. A, 2018, 6, 14780; DOI: https://doi.org/10.1039/C8TA05179H.

    Article  CAS  Google Scholar 

  13. A. A. Konnov, I. M. Dubrovin, M. S. Klenov, O. V. Anikin, A. M. Churakov, Yu. A. Strelenko, A. N. Pivkina, V. A. Tartakovsky, Russ. Chem. Bull., 2021, 70, 2189; DOI: https://doi.org/10.1007/s11172-021-3331-z.

    Article  CAS  Google Scholar 

  14. Y. Xu, C. Shen, Q. Lin, P. Wang, C. Jiang, M. Lu, J. Mater. Chem. A, 2016, 4, 17791; DOI: https://doi.org/10.1039/C6TA08831G.

    Article  CAS  Google Scholar 

  15. L. Liu, Y. Zhang, Z. Lia, S. Zhang, J. Mater. Chem. A, 2015, 3, 14768; DOI: https://doi.org/10.1039/C5TA01901J.

    Article  CAS  Google Scholar 

  16. Q. Ma, H. Gu, J. Huang, F. Nie, G. Fan, L. Liao, W. Yang, New J. Chem., 2018, 42, 2376; DOI: https://doi.org/10.1039/C7NJ03939E.

    Article  CAS  Google Scholar 

  17. D. A. Gulyaev, M. S. Klenov, A. M. Churakov, Yu. A. Strelenko, A. N. Pivkina, V. A. Tartakovsky, Russ. Chem. Bull., 2021, 70, 1599; DOI: https://doi.org/10.1007/S11172-021-3256-6.

    Article  CAS  Google Scholar 

  18. N. Fischer, D. Fischer, T. M. Klapötke, D. G. Piercey, J. Stierstorfer, J. Mater. Chem., 2012, 22, 20418; DOI: https://doi.org/10.1039/C2JM33646D.

    Article  CAS  Google Scholar 

  19. A. A. Gidaspov, V. A. Zalomlenkov, V. V. Bakharev, V. E. Parfenov, E. V. Yurtaev, M. I. Struchkova, N. V. Palysaeva, K. Yu Suponitsky, D. B. Lempert, A. B. Sheremetev, RSC Adv., 2016, 6, 34921; DOI: https://doi.org/10.1039/C6RA05826D.

    Article  CAS  Google Scholar 

  20. A. A. Guskov, M. S. Klenov, A. M. Churakov, V. A. Tartakovsky, Russ. Chem. Bull., 2016, 65, 2763; DOI: https://doi.org/10.1007/s11172-016-1650-2.

    Article  CAS  Google Scholar 

  21. G. F. Rudakov, I. B. Kozlov, N. V. Boev, S. S. Zinchenko, L. Ya. Melnikova, V. Yu. Egorshev, V. P. Sinditskii, ChemistrySelect, 2021, 6, 7654; DOI: https://doi.org/10.1002/slct.202102160.

    Article  CAS  Google Scholar 

  22. Y. Tang, J. Zhang, L. A. Mitchell, D. A. Parrish, J. M. Shreeve, J. Am. Chem. Soc., 2015, 137, 15984; DOI: https://doi.org/10.1021/jacs.5b09831.

    Article  CAS  PubMed  Google Scholar 

  23. A. B. Sheremetev, V. O. Kulagina, N. S. Aleksandrova, D. E. Dmitriev, Y. A. Strelenko, V. P. Lebedev, Y. N. Matyushin, Propellants, Explos., Pyrotech., 1998, 23, 142; DOI: https://doi.org/10.1002/(SICI)1521-4087(199806)23:3<142::AID-PREP142>3.0.CO;2-X.

    Article  CAS  Google Scholar 

  24. N. E. Leonov, M. S. Klenov, O. V. Anikin, A. M. Churakov, Y. A. Strelenko, A. A. Voronin, D. B. Lempert, N. V. Muravyev, I. V. Fedyanin, S. E. Semenov, V. A. Tartakovsky, ChemistrySelect, 2020, 5, 12243; DOI: https://doi.org/10.1002/slct.202003182.

    Article  CAS  Google Scholar 

  25. O. A. Luk’yanov, V. V. Parakhin, Russ. Chem. Bull., 2012, 61, 1582; DOI: https://doi.org/10.1007/s11172-012-0210-7.

    Article  CAS  Google Scholar 

  26. D. B. Lempert, Chin. J. Explos. Propel., 2015, 38, 1; DOI: https://doi.org/10.14077/j.issn.1007-7812.2015.04.001.

    CAS  Google Scholar 

  27. D. B. Lempert, A. I. Kazakov, V. S. Sannikov, A. V. Nabatova, D. V. Dashko, A. I. Stepanov, Comb., Explos., Shock Waves, 2019, 55, 148; DOI: https://doi.org/10.1134/S0010508219020035.

    Article  Google Scholar 

  28. D. B. Lempert, A. I. Kazakov, V. S. Sannikov, A. V. Nabatova, D. V. Dashko, A. I. Stepanov, Comb., Explos., Shock Waves, 2020, 56, 301; DOI: https://doi.org/10.1134/S0010508220030065.

    Article  Google Scholar 

  29. D. B. Lempert, A. I. Kazakov, A. V. Nabatova, D. V. Dashko, A. I. Stepanov, G. V. Shilov, S. M. Aldoshin, Comb., Explos., Shock Waves, 2020, 56, 621; DOI: https://doi.org/10.1134/S0010508220060015.

    Article  Google Scholar 

  30. A. I. Kazakov, D. V. Dashko, A. V. Nabatova, A. I. Stepanov, D. B. Lempert, Comb., Explos., Shock Waves, 2018, 54, 147; DOI: https://doi.org/10.1134/S001050821802003X.

    Article  Google Scholar 

  31. P. Yin, D. A. Parrish, J. M. Shreeve, Chem.—Eur. J., 2014, 20, 6707; DOI: https://doi.org/10.1002/chem.201402762.

    Article  CAS  PubMed  Google Scholar 

  32. P. Yin, J. Zhang, C. He, D. A. Parrish, J. M. Shreeve, J. Mater. Chem. A, 2014, 2, 3200; DOI: https://doi.org/10.1039/C3TA15057G.

    Article  CAS  Google Scholar 

  33. V. M. Vinogradov, I. L. Dalinger, V. I. Gulevskaya, S. A. Shevelev, Russ. Chem. Bull., 1993, 42, 1369; DOI: https://doi.org/10.1007/BF00699933.

    Article  Google Scholar 

  34. T. K. Shkineva, I. L. Dalinger, I. A. Vatsadze, A. V. Kormanov, S. A. Shevelev, Russ. Chem. Bull., 2012, 61, 467; DOI: https://doi.org/10.1007/s11172-012-0066-x.

    Article  CAS  Google Scholar 

  35. A. V. Kormanov, T. K. Shkineva, I. A. Vatsadze, S. A. Shevelev, I. L. Dalinger, Russ. Chem. Bull., 2014, 63, 435; DOI: https://doi.org/10.1007/s11172-014-0450-9.

    Article  CAS  Google Scholar 

  36. D. A. Gulyaev, M. S. Klenov, A. M. Churakov, Y. A. Strelenko, I. V. Fedyanin, D. B. Lempert, E. K. Kosareva, T. S. Kon’kova, Y. N. Matyushin, V. A. Tartakovsky, RSC Adv., 2021, 11, 24013. DOI: https://doi.org/10.1039/D1RA03919A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Y. Zhong, J. Huang, J. Song, K. Xu, D. Zhao, L. Wang, X. Zhang, Chin. J. Chem., 2011, 29, 1672; DOI: https://doi.org/10.1002/cjoc.201180243.

    Article  CAS  Google Scholar 

  38. CODATA Key Values for Thermodynamics. Final Report of the CODATA. Task Group on Key Values for Thermodynamics, Eds J. D. Cox, D. D. Wagman, V. A. Medvedev, New York, Washington, Philadelphia, London, 1989.

  39. P. Politzer, J. S. Murray, M. E. Grice, M. DeSalvo, E. Miller, Mol. Phys., 1997, 91, 923. DOI: https://doi.org/10.1080/002689797171030.

    Article  CAS  Google Scholar 

  40. N. V. Muravyev, D. B. Meerov, K. A. Monogarov, I. N. Melnikov, E. K. Kosareva, L. L. Fershtat, A. B. Sheremetev, I. L. Dalinger, I. V. Fomenkov, A. N. Pivkina, Chem. Eng. J., 2021, 421, 129804; DOI: https://doi.org/10.1016/j.cej.2021.129804.

    Article  CAS  Google Scholar 

  41. V. I. Pepekin, Yu. A. Lebedev, Dokl. Chem. (Engl. Transl.), 1977, 234, 1391.

    CAS  Google Scholar 

  42. R. Meyer, J. Kohler, A. Homburg, Explosives, Sixth Edition, Wiley-VCH, Weinheim, 2007.

    Google Scholar 

  43. B. G. Turusov, Programmnaya systema Terra dlya modelirovania fazovykh i khimicheskikh ravnovsii [Terra Software Package for Modelling Phase and Chemical Equilibria] Tez. dokl. XIV Mezhdunarodnoi konf. po khimicheskoi termodinamike [Abstrs of Papers, XIV International Conference on Chemical Thermodynamics] (July 1–5, 2002, Saint Petersburg), NII Khimii SPbGU, 2002, 483 (in Russian).

  44. G. Ya. Pavlovets, V. I. Tsutsuran, Fiziko-khimicheskie svoistva porokhov i raketnykh topliv [Physicochemical Properties of Gunpowders and Rocket Fuels], Izd-vo Ministerstva oborony, Moscow, 2009, 408 pp. (in Russian).

    Google Scholar 

  45. A. A. Coelho, J. Appl. Cryst., 2018, 51, 210; DOI: https://doi.org/10.1107/S1600576718000183.

    Article  CAS  Google Scholar 

  46. A. A. Coelho, J. Appl. Cryst., 2003, 36, 86. DOI: https://doi.org/10.1107/S0021889802019878.

    Article  CAS  Google Scholar 

  47. Ya. O. Inozemtsev, A. B. Vorob’ev, A. V. Inozemtsev, Yu. N. Matyushin, Combustion and Explosion (Gorenie i vzryv), 2014, 7, 260.

    Google Scholar 

  48. T. S. Kon’kova, Yu. N. Matyushin, E. A. Miroshnichenko, A. B. Vorob’ev, Russ. Chem. Bull., 2009, 58, 2020; DOI: https://doi.org/10.1007/s11172-009-0276-z.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (Project No. 19-13-00276) except for calorimetric measurements, which were performed within the framework of the state assignment (theme 1.4.1.5 “Explosive Burning Processes,” S. M. Frolov is the Head of the Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Klenov.

Additional information

No human or animal subjects were used in this research.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1123–1134, June, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klenov, M.S., Lempert, D.B., Konnov, A.A. et al. 1,2-Bis(nitroazol-1-yl)diazenes: improved methods of synthesis, determination of the enthalpies of formation, and calculations of main energy characteristics of solid composite propellants based on these compounds. Russ Chem Bull 71, 1123–1134 (2022). https://doi.org/10.1007/s11172-022-3512-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3512-4

Key words

Navigation