Skip to main content
Log in

Synthesis and properties of aromatic polyimides chemically modified by polyurethanes

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The experimentally tested schemes are presented for the synthesis of copoly(urethaneimides) and related composites with complicated molecular structures: multiblock (segmented) copolymers with enhanced and lowered relative contents of thermodynamically incompatible rigid imide and flexible urethane (polyether and polyester) blocks, composites of copoly(urethane-imides) with graphene and tungsten disulfide nanoparticles, non-segregating mixtures of copoly(urethane-imides) and polyimides, random copolymers of imides with copoly(urethane-imides), and multiblock copoly(urethane-imides) cross-linked via rigid imide blocks based on both one and two polyethers. The synthesized polymeric systems were studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The compositions of the polymeric systems was shown to affect the separation and interaction of polyether and imide microphases, which makes it possible to transit from polyimide thermoplastics to copoly(urethane-imide) thermoelastoplastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, L. A. Laius, Poliimidy — klass of termostoikikh polimerov [Polyimides — Class of Thermally Stable Polymers], New York, Consultants Bureau, 1987, 318 pp.

    Google Scholar 

  2. A. Jonquieres, R. Clement, P. Lochon, Prog. Polym. Sci., 2002, 27, 1803; DOI: https://doi.org/10.1016/S0079-6700(02)00024-2.

    Article  CAS  Google Scholar 

  3. V. V. Korshak, Termostoikie polimery [Thermally Stable Polymers], Moscow, Nauka, 1969, p. 411 (in Russian).

    Google Scholar 

  4. X. Sang, R. Wang, X. Chen, L. Zhang, M. An, Y. Shen, Adv. Mater. Res., 2011, 284–286, 1746; DOI: https://doi.org/10.4028/www.scientific.net/AMR.284-286.1746.

    Article  Google Scholar 

  5. X. Solimando, J. Babin, C. Arnal-Herault, M. Wang, D. Barth, D. Roizard, J.-R. Doillon-Halmenschlager, M. Poncot, I. Royaud, P. Alcouffe, L. David, A. Jonquires, Polymer, 2017, 131, 56; DOI: https://doi.org/10.1016/j.polymer.2017.10.007.

    Article  CAS  Google Scholar 

  6. T. Ueda, S.-I. Inoue, Org. Polym. Mater., 2018, 8, 11; DOI: https://doi.org/10.4236/ojopm.2018.81001.

    CAS  Google Scholar 

  7. P. Wright, A. P. C. Cumming, Solid Polyurethane Elastomers, London, Maclaren and Sons, 1969.

    Google Scholar 

  8. T. Ueda, T. Nishio, S. Inoue, Open J. Org. Polym. Mater., 2017, 7, 47; DOI: https://doi.org/10.4236/ojopm.2017.74004.

    Article  CAS  Google Scholar 

  9. B. Masiulanis, J. Hrouz, J. Baldrian, M. Ilavský, K. Dušek, J. Appl. Polym. Sci., 1987, 34, 1941; DOI: https://doi.org/10.1002/app.1987.070340512.

    Article  CAS  Google Scholar 

  10. A. L. Didenko, V. E. Smirnova, G. V. Vaganov, E. N. Popova, V. Yu. Elokhovskii, O. V. Toloshko, E. S. Vasilyeva, D. A. Kuznetcov, V. M. Svetlichnyi, V. E. Yudin, V. V. Kudryavtsev, J. Inter. Sci. Publ.: Materials, Methods and Technologies, 2018, 12, 144.

    Google Scholar 

  11. A. A. Kanauzova, M. A. Yumashev, A. A. Dontsov, Termoelastoplasty [Thermoelastoplastics], Ed. V. V. Moiseev, Moscow, 1985, p. 66 (in Russian).

  12. M. A. Gorbunova, D. V. Anokhin, A. A. Grishchuk, E. R. Badamshina, V. Y. Zaitsev, Russ. Chem. Bull., 2020, 69, 1740; DOI: https://doi.org/10.1007/s11172-020-2957-6.

    Article  CAS  Google Scholar 

  13. A. C. de Visser, A. A. Driessen, J. G. C. Wolke, Die Makromolekulare Chemie, Rapid Communications, 1980, 1, 177; DOI: https://doi.org/10.1002/marc.1980.030010309.

    Article  CAS  Google Scholar 

  14. H. Yeganeh, M. A. Shamekhi, Polymer, 2004, 45, 359; DOI: https://doi.org/10.1016/j.polymer.2003.11.006.

    Article  CAS  Google Scholar 

  15. R. M. Gerkin, B. L. Hilker, Encyclopedia of Materials: Science and Technology, 2001, 730; DOI: https://doi.org/10.1016/b0-08-043152-6/00140-6.

  16. A. L. Didenko, V. E. Smirnova, E. N. Popova, G. V. Vaganov, D. A. Kuznetcov, V. M. Svetlichnyi, O. V. Tolochko, E. S. Vasilyeva, V. E. Yudin, V. V. Kudryavtsev, Russ. Chem. Bull., 2019, 68, 1603; DOI: https://doi.org/10.1007/s11172-019-2599-8.

    Article  CAS  Google Scholar 

  17. A. L. Didenko, V. E. Smirnova, G. V. Vaganov, E. N. Popova, O. V. Toloshko, E. S. Vasilyeva, D. A. Kuznetcov, V. Yu. Elokhovskii, A. G. Ivanov, V. M. Svetlichnyi, V. E. Yudin, V. V. Kudryavtsev, Russ. J. Appl. Chem., 2020, 93, 54; DOI: https://doi.org/10.1134/S0044461820010053.

    Article  Google Scholar 

  18. A. L. Didenko, D. A. Kuznetsov, V. E. Smirnova, E. N. Popova, G. V. Vaganov, A. G. Ivanov, V. M. Svetlichnyi, V. E. Yudin, V. V. Kudryavtsev, Russ. Chem. Bull., 2020, 69, 369; DOI: https://doi.org/10.1007/s11172-020-2769-8.

    Article  CAS  Google Scholar 

  19. D. A. Kuznetcov, A. L. Didenko, V. M. Svetlichnyi, V. E. Smirnova, E. N. Popova, G. V. Vaganov, V. E. Yudin, V. V. Kudryavtsev, Polym. Sci. A, 2019, 61, 142; DOI: https://doi.org/10.1134/S0965545X1902007X.

    Article  Google Scholar 

  20. V. E. Yudin, V. E. Smirnova, A. L. Didenko, E. N. Popova, I. V. Gofman, A. V. Zarbuev, V. M. Svetlichnyi, V. V. Kudryavtsev, Russ. J. Appl. Chem., 2013, 86, 920; DOI: https://doi.org/10.1134/S1070427213060232.

    Article  CAS  Google Scholar 

  21. A. L. Didenko, V. E. Yudin, V. E. Smirnova, I. V. Gofman, E. N. Popova, V. Yu. Elokhovskii, V. M. Svetlichnyi, V. V. Kudryavtsev, J. Intern. Sci. Publications: Materials, Methods and Technologies, 2014, 8, 31, https://www.scientific-publications.net/get/1000002/1401698332577960.pdf.

    Google Scholar 

  22. V. E. Yudin, A. N. Bugrov, A. L. Didenko, V. E. Smirnova, I. V. Gofman, S. V. Kononova, R. V. Kremnev, E. N. Popova, V. M. Svetlichnyi, V. V. Kudryavtsev, Polym. Sci. Ser. B, 2014, 56, 919; DOI: https://doi.org/10.1134/S1560090414060165.

    Article  CAS  Google Scholar 

  23. N. A. Nikonorova, A. L. Didenko, V. V. Kudryavtsev, R. A. Castro, J. Non-Crystalline Solids, 2016, 447, 117; DOI: https://doi.org/10.1016/j.jnoncrysol.2016.05.036.

    Article  CAS  Google Scholar 

  24. I. A. Kobykhno, D. A. Kuznetcov, A. L. Didenko, V. E. Smirnova, G. V. Vaganov, A. G. Ivanov, E. N. Popova, L. S. Litvinova, V. M. Svetlichnyi, E. S. Vasilyeva, O. V. Tolochko, V. E. Yudin, V. V. Kudryavtsev, Physics and Mechanics, 2018, 40, 221; DOI: https://doi.org/10.18720/MPM.4022018_10.

    CAS  Google Scholar 

  25. A. L. Didenko, D. A. Kuznetsov, G. V. Vaganov, V. E. Smirnova, E. N. Popova, A. G. Ivanov, V. M. Svetlichnyi, V. E. Yudin, V. V. Kudryavtsev, Polym. Sci., Ser. C, 2020, 62, 90.

    Article  CAS  Google Scholar 

  26. T. Zorba, K. Chrissafis, K. M. Paraskevopoulos, D. N. Bikiaris, Polymer Degradation and Stability, 2007, 92, 222; DOI: https://doi.org/10.1016/j.polymdegradstab.2006.11.009.

    Article  CAS  Google Scholar 

  27. RF Pat. 2279452; Byul. Izobret. [Invention Bull.], 2006, 13 (in Russian).

  28. V. E. Yudin, V. M. Svetlichnyi, V. V. Kudryavtsev, Polymer. Sci., Ser. C, 2003, 45, 140.

    Google Scholar 

  29. V. E. Yudin, V. M. Svetlichnyi, Russ. J. Gen. Chem., 2010, 80, 2157; DOI: https://doi.org/10.1134/s1070363210100452.

    Article  CAS  Google Scholar 

  30. N. P. Iyer, T. P. Gnanarajan, G. Radhakrishnan, Macromol. Chem. Phys., 2002, 203, 712; DOI: https://doi.org/10.1002/1521-3935(20020301)203:4<712::AID-MACP712>3.0.CO;2-F.

    Article  CAS  Google Scholar 

  31. M. Zuo, T. Takeichi, Polymer, 1999, 40, 5153.

    Article  CAS  Google Scholar 

  32. Yu. P. Yampolskii, N. A. Belov, A. Yu. Alentiev, Russ. Chem. Rev., 2019, 88, 387; DOI: https://doi.org/10.1070/RCR4861.

    Article  CAS  Google Scholar 

  33. E. S. Alekseev, A. Yu. Alentiev, A. S. Belova, V. I. Bogdan, T. V. Bogdan, A. V. Bystrova et al, Russ. Chem. Rev., 2020, 89, 1337; DOI: https://doi.org/10.1070/RCR4932.

    Article  CAS  Google Scholar 

  34. A. L. Didenko, A. G. Ivanov, E. A. Bogdanova, V. E. Smirnova, G. V. Vaganov, E. N. Popova, D. A. Kuznetsov, I. A. Kobykhno, E. S. Vasilyeva, O. V. Tolochko, V. M. Svetlichny, V. E. Yudin, V. V. Kudryavtsev, Russ. Chem. Bull., 2021, 9, 1746; DOI:https://doi.org/10.1007/s11172-021-3279-z.

    Article  Google Scholar 

  35. A. L. Didenko, A. G. Ivanov, E. A. Bogdanova, V. E. Smirnova, G. V. Vaganov, E. N. Popova, D. A. Kuznetsov, I. A. Kobykhno, E. S. Vasilyeva, O. V. Tolochko, V. M. Svetlichny, V. E. Yudin, V. V. Kudryavtsev, Russ. J. Appl. Chem., 2021, 94, No. 9, 1164–1185; DOI: https://doi.org/10.31857/S0044461821090073.

    Article  Google Scholar 

  36. J. M. Thompson, Infrared Spectroscopy, 2018, Pan Stanford Publishing Pt. Ltd.

  37. B. Zimmer, C. Nies, C. Schmitt, W. Possart, Polymer, 2017, 115, 77; DOI: https://doi.org/10.1016/j.polymer.2017.03.020.

    Article  CAS  Google Scholar 

  38. C. D. Eisenbach, W. Cronski, Macromol. Chem., Rapid Commun., 1983, 4, 707; DOI: https://doi.org/10.1002/marc.1983.030041103.

    Article  CAS  Google Scholar 

  39. A. Rasa, Proc. Inter. Noise, 2014, Melbourne. https://www.acoustics.asn.au/conference_proceedings/INTERNOISE2014/abstracts/session-papers.htm.

  40. Yu. V. Yurkin, I. A. Mansurova, V. S. Belozerov, A. Zlobina, Materiale Plastice, 2018, 55, 469; DOI: https://doi.org/10.37358/MP.18.4.5055.

    Article  Google Scholar 

  41. A. N. Volotskoi, Yu. V/ Yurkin, V. V. Avdonin, Electronic Scientific Journal “Don Engineering Bulletin,” 2019, 8, ivdon.ru/ru/magazine/archive/n8y2019/6136 (in Russian).

  42. D. A. Kuznetsov, V. M. Svetlichny, A. L. Didenko, G. V. Vaganov, V. Yu. Elokhovskiy, V. V. Kudryavtsev, V. E. Yudin, Russ. J. Appl. Chem., 2020, 62, 1418; DOI: https://doi.org/10.31857/S0044461820100023.

    Google Scholar 

  43. H. Yeganeh, M. A. Shamekhi, Polymer, 2004, 45, 359; DOI: https://doi.org/10.1016/j.polymer.2003.11.006.

    Article  CAS  Google Scholar 

  44. I. Kobykhno, A. Didenko, D. Honcharenko, E. Vasilyeva, V. Kudryavtsev, O. Tolochko, Materials Today: Proceedings, 2020, 30, Part 3, 393–397; DOI: https://doi.org/10.1016/j.matpr.2019.12.383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Didenko.

Additional information

No human or animal subjects were used in this research.

The authors declare no competing interests.

Based on materials of the II Korshak All-Russian Conference with International Participation “Polycondensation Processes and Polymers” (February 25–26, 2021, Moscow, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1085–1110, June, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didenko, A.L., Kuznetsov, D.A., Ivanov, A.G. et al. Synthesis and properties of aromatic polyimides chemically modified by polyurethanes. Russ Chem Bull 71, 1085–1110 (2022). https://doi.org/10.1007/s11172-022-3510-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3510-6

Key words

Navigation