Skip to main content
Log in

Decomposition of zinc (1-hydroxyethylidene)diphosphonate induced by aliphatic amines and ammonia. Molecular structures of ammonium (1-hydroxyethylidene)diphosphonates

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A suspension of sparingly soluble zinc (1-hydroxyethylidene)diphosphonate ZnH2L•2H2O (H4L = MeC(OH)[P(O)(OH)2]2) is rapidly transformed into an aqueous solution when treated with ammonia or aliphatic amines (hexamethylenediamine, triethylamine, tert-butylamine, di-n-butylamine) containing no hydrophilic groups −OH and −(OCH2CH2)n−. The dissolution effect is due to the decomposition of the coordination polymer giving ammonium derivatives. Dehydrated dry powders of the corresponding ammonium compounds based on triethylamine, tert-butylamine, or di-n-butylamine rapidly dissolve in water to form transparent colorless solutions, whereas hexamethylenediamine and ammonia derivatives are poorly soluble. (1-Hydroxyethylidene)diphosphonic acid forms ammonium salts with hexamethylenediamine, triethylamine, and tert-butylamine. The molecular structures of these compounds are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. I. Anspok, Microudobreniya [Microfertilizers], Agropromizdat, Leningrad, 1990, 272 pp. (in Russian).

    Google Scholar 

  2. N. M. Dyatlova, V. Ya. Temkina, K. I. Popov, Kompleksony i kompleksonaty metallov [Complexones and Metal Complexonates], Khimiya, Moscow, 1988, 544 pp. (in Russian).

    Google Scholar 

  3. N. M. Dyatlova, Zh. Vsesoyzn. Khim. Obshch. im. D. I. Mendeleeva [Mendeleev Chem. J.], 1984, 29, 7 (in Russia

    Google Scholar 

  4. A. Kabata-Pendias, Ross. Khim. Zh. [Russ. Chem. J.], 2005, 49, 15 (in Russian).

    CAS  Google Scholar 

  5. E. A. Karpova, Ross. Khim. Zh. [Russ. Chem. J.], 2005, 49, 20 (in Russian).

    CAS  Google Scholar 

  6. V. V. Semenov, N. V. Zolotareva, B. I. Petrov, Pat. RF 2015110362/04, 2015; Byul. Izobret. [Inventor Bull.], No. 4, 2017 (in Russian).

  7. V. V. Semenov, N. V. Zolotareva, B. I. Petrov, E. V. Baranov, V. I. Titova, L. D. Varlamova, E. Yu. Geyger, I. D. Korolenko, E. V. Dabakhova, Russ. J. Gen. Chem., 2015, 85, 1116; DOI: https://doi.org/10.1134/S1070363215050199.

    Article  CAS  Google Scholar 

  8. V. V. Semenov, N. V. Zolotareva, B. I. Petrov, O. V. Novikova, T. I. Kulikova, E. N. Razov, A. V. Kruglov, V. E. Kotomina, E. Yu. Geyger, L. D. Varlamova, V. I. Titova, N. A. Korchenkina, A. P. Sakov, Russ. Chem. Bull., 2018, 67, 336; DOI: https://doi.org/10.1007/s11172-018-2079-6.

    Article  CAS  Google Scholar 

  9. V. V. Semenov, N. V. Zolotareva, B. I. Petrov, O. V. Novikova, E. N. Razov, A. V. Kruglov, Russ. J. Gen. Chem., 2018, 88, 509; DOI https://doi.org/10.1134/S1070363218030180.

    Article  CAS  Google Scholar 

  10. V. V. Semenov, N. V. Zolotareva, B. I. Petrov, N. M. Lazarev, E. N. Razov, A. O. Syubaeva, N. A. Kodochilova, Agrokhimia [Agrochemistry], 2020, No. 2, 51 (in Russian); DOI: https://doi.org/10.31857/S000218812002012X.

  11. V. V. Semenov, N. V. Zolotareva, B. I. Petrov, N. M. Lazarev, O. V. Novikova, E. V. Baranov, E. N. Razov, N. A. Kodochilova, A. O. Ivanenkova, Russ. Chem. Bull., 2020, 69, 1778; DOI: https://doi.org/10.1007/s11172-020-2962-9.

    Article  Google Scholar 

  12. N. V. Zolotareva, V. V. Semenov, B. I. Petrov, Russ. J. Gen. Chem., 2013, 83, 1985; DOI: https://doi.org/10.1134/S1070363213110030.

    Article  CAS  Google Scholar 

  13. L. J. Bellamy, Advances in Infrared Group Frequencies, Methuen Co. Ltd, London, 1968.

    Google Scholar 

  14. R. M. Silverstein, G. C. Bassler, T. C. Morrill, Spectrometric Identification of Organic Compounds, John Wiley and Sons, Inc., New York—London—Sydney—Toronto, 1974.

    Google Scholar 

  15. K. D. Demadis, S. D. Katarachia, M. Koutmos, Inorg. Chem. Commun., 2005, 8, 254; DOI: https://doi.org/10.1016/j.inoche.2004.12.019.

    Article  CAS  Google Scholar 

  16. L. Guan, Y. Wang, J. Coord. Chem., 2017, 70, 2530; DOI: https://doi.org/10.1080/00958972.2017.1354249.

    Article  CAS  Google Scholar 

  17. K. D. Demadis, C. Mantzaridis, P. Lykoudis, Ind. Eng. Chem. Res., 2006, 45, 7795; DOI: https://doi.org/10.1021/ie0607898.

    Article  CAS  Google Scholar 

  18. F. H. Allen, D. G. Watson, L. Brammer, A. G. Orpenand, R. Taylor, International Tables for Crystallography, 2006, C, 9.5, 790.

    Article  Google Scholar 

  19. E. Espinosa, E. Molins, C. Lecomte, Chem. Phys. Lett., 1998, 285, 170; DOI: https://doi.org/10.1016/S0009-2614(98)00036-0.

    Article  CAS  Google Scholar 

  20. R. F. W. Bader, Atoms in Molecules — A Quantum Theory, Oxford Univ. Press, Oxford, 1990.

    Google Scholar 

  21. T. Steiner, Angew. Chem., Int. Ed., 2002, 41, 48; DOI: https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U.

    Article  CAS  Google Scholar 

  22. Bruker. APEX3, Bruker AXS Inc., Madison, Wisconsin, USA, 2018.

  23. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst., 2015, 48, 3; DOI: https://doi.org/10.1107/S1600576714022985.

    Article  CAS  Google Scholar 

  24. G. M. Sheldrick, Acta Cryst., 2015, C71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Google Scholar 

  25. N. K. Hansen, P. Coppens, Acta Crystallogr. A, 1978, 34, 909; DOI: https://doi.org/10.1107/S0567739478001886.

    Article  Google Scholar 

  26. C. Jelsch, B. Guillot, A. Lagoutte, C. Lecomte, J. Appl. Crystallogr., 2005, 38, 38; DOI: https://doi.org/10.1107/S0021889804025518.

    Article  Google Scholar 

  27. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, No. 12, S1; DOI: https://doi.org/10.1039/P298700000S1.

  28. F. Hirshfeld, Acta Crystallogr. A, 1976, 32, 239; DOI: https://doi.org/10.1107/S0567739476000533.

    Article  Google Scholar 

  29. A. I. Stash, V. G. Tsirelson, J. Appl. Crystallogr., 2002, 35, 371; DOI: https://doi.org/10.1107/S0021889802003230.

    Article  CAS  Google Scholar 

  30. A. I. Stash, V. G. Tsirelson, J. Appl. Crystallogr., 2014, 47, 2086; DOI: https://doi.org/10.1107/S1600576714021566.

    Article  CAS  Google Scholar 

  31. A. I. Stash, V. G. Tsirelson, Crystallogr. Rep., 2005, 50, 177; DOI: https://doi.org/10.1134/1.1887890.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Semenov or E. N. Razov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 980–992, May, 2022.

The studies were performed within the framework of the state assignment (task No. 45.8 “Chemistry of Functional Materials”, registration number 0094-2016-0012) using the equipment of the Center for Collective Use “Analytical Center of the IOMC RAS” of the G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences with the financial support of the Federal Target Program “Research and Development in Priority Fields of the Science and Technology Complex of Russia for 20142020” (unique project identifier RFMEFI62120X0040). The single-crystal X-ray diff raction studies were performed within the framework of the state assignment (task No. 44.2, registration number AAAA-A16-116122110053-1) using the equipment of the Center for Collective Use of the Research and Education Center “Physics of Solid State Nanostructures” of the Lobachevsky State University of Nizhny Novgorod. Experiments using scanning electron microscopy were performed within the state assignment for the Institute of Applied Physics of the Russian Academy of Sciences for fundamental scientific research for 2019–2022 (task No. 0035-2019-0026, registration number 01201458049).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, V.V., Zolotareva, N.V., Novikova, O.V. et al. Decomposition of zinc (1-hydroxyethylidene)diphosphonate induced by aliphatic amines and ammonia. Molecular structures of ammonium (1-hydroxyethylidene)diphosphonates. Russ Chem Bull 71, 980–992 (2022). https://doi.org/10.1007/s11172-022-3500-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3500-8

Key words

Navigation