Skip to main content
Log in

Synthesis and crystal structure of a luminescent metal-organic framework based on 4,7-(4-carboxyphenyl)-2,1,3-benzoxadiazole

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A three-dimensional coordination polymer was synthesized by the reaction of zinc(ii) nitrate with 4,7-(4-carboxyphenyl)-2,1,3-benzoxadiazole and di(imidazol-1-yl)methane. The crystal structure of the new compound was determined by single-crystal X-ray diffraction. In the structure of the metal-organic framework, the trinuclear secondary building units are connected to each other to form a uninodal eight-connected net with the symbol {33.418.55.62}. This topology has not been previously found in coordination polymers. The framework contains channels with dimensions of 7×8 Å2. The solvent-accessible volume is 24%. The compound exhibits emission with a maximum at 524 nm upon excitation at 395 nm. The photoluminescence quantum yield is 19%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-N. Zhao, G. Wang, D. Poelman, P. Voort, S.-N. Zhao, G. Wang, D. Poelman, P. Van Der Voort, Materials, 2018, 11, 572; DOI: https://doi.org/10.3390/ma11040572.

    Article  Google Scholar 

  2. S. L. Jackson, A. Rananaware, C. Rix, S. V. Bhosale, K. Latham, Cryst. Growth Des., 2016, 16, 3067; DOI:. https://doi.org/10.1021/acs.cgd.6b00428.

    Article  CAS  Google Scholar 

  3. A. Kuznetsova, V. Matveevskaya, D. Pavlov, A. Yakunenkov, A. Potapov, Materials, 2020, 13, 2699; DOI: https://doi.org/10.3390/ma13122699.

    Article  CAS  Google Scholar 

  4. T. S. Sukhikh, D. S. Ogienko, D. A. Bashirov, S. N. Konchenko, Russ. Chem. Bull., 2019, 68, 651; DOI: https://doi.org/10.1007/s11172-019-2472-9.

    Article  CAS  Google Scholar 

  5. B. A. D. Neto, A. A. M. Lapis, E. N. Da Silva Júnior, J. Dupont, Eur. J. Org. Chem., 2013, 228; DOI: https://doi.org/10.1002/ejoc.201201161.

  6. T. S. Sukhikh, R. M. Khisamov, D. A. Bashirov, V. Y. Komarov, M. S. Molokeev, A. A. Ryadun, E. Benassi, S. N. Konchenko, Cryst. Growth Des., 2020, 20, 5796; DOI: https://doi.org/10.1021/acs.cgd.0c00406.

    Article  CAS  Google Scholar 

  7. R. J. Marshall, Y. Kalinovskyy, S. L. Griffin, C. Wilson, B. A. Blight, R. S. Forgan, J. Am. Chem. Soc., 2017, 139, 6253; DOI: https://doi.org/10.1021/jacs.7b02184.

    Article  CAS  Google Scholar 

  8. A. Mallick, A. M. El-Zohry, O. Shekhah, J. Yin, J. Jia, H. Aggarwal, A.-H. Emwas, O. F. Mohammed, M. Eddaoudi, J. Am. Chem. Soc., 2019, 141, 7245; DOI: https://doi.org/10.1021/jacs.9b01839.

    Article  CAS  Google Scholar 

  9. X. Luo, L. Kan, X. Li, L. Sun, G. Li, J. Zhao, D.-S. Li, Q. Huo, Y. Liu, Cryst. Growth Des., 2016, 16, 7301; DOI: https://doi.org/10.1021/acs.cgd.6b01539.

    Article  CAS  Google Scholar 

  10. X. Han, Q. Cheng, X. Meng, Z. Shao, K. Ma, D. Wei, J. Ding, H. Hou, Chem. Commun., 2017, 53, 10314; DOI: https://doi.org/10.1039/C7CC06125K.

    Article  CAS  Google Scholar 

  11. Z. Ju, W. Yan, X. Gao, Z. Shi, T. Wang, H. Zheng, Cryst. Growth Des., 2016, 16, 2496; DOI: https://doi.org/10.1021/acs.cgd.5b00681.

    Article  CAS  Google Scholar 

  12. C. Song, Y. Ling, L. Jin, M. Zhang, D.-L. Chen, Y. He, Dalt. Trans., 2016, 45, 190; DOI: https://doi.org/10.1039/C5DT02845K.

    Article  CAS  Google Scholar 

  13. S. Wu, D. Ren, K. Zhou, H.-L. Xia, X.-Y. Liu, X. Wang, J. Li, J. Am. Chem. Soc., 2021, 143, 10547; DOI: https://doi.org/10.1021/jacs.1c04810.

    Article  CAS  Google Scholar 

  14. V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Cryst. Growth Des., 2014, 14, 3576; DOI: https://doi.org/10.1021/cg500498k.

    Article  CAS  Google Scholar 

  15. C. Bonneau, M. O’Keeffe, D. M. Proserpio, V. A. Blatov, S. R. Batten, S. A. Bourne, M. S. Lah, J.-G. Eon, S. T. Hyde, S. B. Wiggin, L. Öhrström, Cryst. Growth Des., 2018, 18, 3411; DOI: https://doi.org/10.1021/acs.cgd.8b00126.

    Article  CAS  Google Scholar 

  16. A. R. C. Hinojosa, S. P. de Souza, T. V. Alves, I. T. O. dos Santos, E. O. Silva, I. L. Gonçalves, A. A. Merlo, C. F. Junkes, I. H. Bechtold, A. A. Vieira, J. Mol. Liq., 2021, 338, 116614; DOI: https://doi.org/10.1016/j.molliq.2021.116614.

    Article  CAS  Google Scholar 

  17. V. M. Korshunov, M. S. Mikhailov, T. N. Chmovzh, A. A. Vashchenko, N. S. Gudim, L. V Mikhalchenko, I. V. Taydakov, O. A. Rakitin, Molecules, 2021, 26, 2872; DOI: https://doi.org/10.3390/molecules26102872.

    Article  CAS  Google Scholar 

  18. V. A. Lazarenko, P. V. Dorovatovskii, Y. V. Zubavichus, A. S. Burlov, Y. V. Koshchienko, V. G. Vlasenko, V. N. Khrustalev, Crystals, 2017, 7, 325; DOI: https://doi.org/10.3390/cryst7110325.

    Article  Google Scholar 

  19. R. D. Svetogorov, P. V. Dorovatovskii, V. A. Lazarenko, Crystal Research and Technology, 2020, 55, 1900184; DOI: https://doi.org/10.1002/crat.201900184.

    Article  CAS  Google Scholar 

  20. W. Kabsch, Acta Crystallogr. Sect. D: Biol. Crystallogr., 2010, 66, 125; DOI: https://doi.org/10.1107/S0907444909047337.

    Article  CAS  Google Scholar 

  21. W. Kabsch, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2010, 66, 133; DOI: https://doi.org/10.1107/S0907444909047374.

    Article  CAS  Google Scholar 

  22. G. M. Sheldrick, Acta Crystallogr. Sect. A., 2015, 71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Article  Google Scholar 

  23. G. M. Sheldrick, Acta Crystallogr. Sect. C., 2015, 71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Potapov.

Additional information

Based on the materials of the All-Russian Congress on Chemistry of Heterocyclic Compounds (October 12–16, 2021, Sochi, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 974–979, May, 2022.

This study was financially supported by the Russian Science Foundation (Project No. 19-73-20087). Physicochemical studies of the synthesized compounds were performed at the Center of Shared Use of the A. V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, with the financial support from the Ministry of Science and Higher Education of the Russian Federation (Project Nos 121031700321-3 and 121031700313-8).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, D.I., Poklonova, V.V., Ryadun, A.A. et al. Synthesis and crystal structure of a luminescent metal-organic framework based on 4,7-(4-carboxyphenyl)-2,1,3-benzoxadiazole. Russ Chem Bull 71, 974–979 (2022). https://doi.org/10.1007/s11172-022-3499-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3499-x

Key words

Navigation