Skip to main content
Log in

Decomposition reactions of azo compounds, as studied by quantum chemistry methods and the parabolic model

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Decomposition reactions of azoalkanes of different structure were studied by quantum chemistry methods (MP2/6-311++G** calculations) and by the method of three intersecting parabolas (M3IP). The MP2 method was used to obtain the transition-state geometries, the bond lengths in the molecules under study, and the activation energies. Possible mechanisms of decomposition are discussed. Concerted decomposition of branched azoalkanes was shown to be the most probable mechanism of the process. The M3IP method was used to calculate the kinetic and thermodynamic parameters of concerted decomposition of azoalkanes and to determine and evaluate the main factors affecting the activation energy (E). The stabilization energy of the radical being formed in the decomposition reaction is one of the key factors determining the concerted mechanism. The kinetic parameters calculated by the two independent methods are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. T. Denisov, T. G. Denisova, T. S. Pokidova, Handbook of Free Radical Initiators, Wiley, Hoboken, 2003, 879 pp.; DOI: https://doi.org/10.5860/choice.41-0318.

    Book  Google Scholar 

  2. P. S. Engel, R. L. Montgomery, M. Manson, R. A. Leckonby, H. L. Foyt, F. D. Rossini, J. Chem. Thermodyn., 1978, 10, 205; DOI: https://doi.org/10.1016/0021-9614(78)90016-2.

    Article  CAS  Google Scholar 

  3. P. S. Engel, R. A. Melaugh, M. Manson, J. W. Timberlake, A. W. Garner, F. D. Rossini, J. Chem. Thermodyn., 1976, 8, 607; DOI: https://doi.org/10.1016/0021-9614(76)90011-2.

    Article  CAS  Google Scholar 

  4. NIST Standard Reference Database 19A, Positive Ion Energetics, Version 2.02, Gaithersburg, 1994.

  5. O. P. Strausz, J. W. Lown, H. E. Gunning, in Comprehensive Chemical Kinetics, Eds C. H. Bamford, C. F. H. Tipper, Elsever, Amsterdam, 1972, Vol. 5, p. 566.

  6. P. S. Engel, Chem. Rev., 1980, 80, 99; DOI: https://doi.org/10.1021/cr60324a001.

    Article  CAS  Google Scholar 

  7. T. Koenig, in Free Radicals, Ed. J. K. Kochi, John Wiley & Sons, Inc., New York, 1973, Vol. 1, p. 113; DOI: https://doi.org/10.1002/POL.1973.130110815.

  8. E. W.-G. Diau, O. K. Abou-Zeid, A. A. Scala, A. H. Zewail, J. Am. Chem. Soc., 1998, 120, 3245; DOI: https://doi.org/10.1021/ja9743553.

    Article  CAS  Google Scholar 

  9. T. S. Pokidova, E. T. Denisov, A. F. Shestakov, Petroleum Chemistry (Engl. Transl.), 2009, 49, 363; DOI: https://doi.org/10.1134/S0965544109050016.

    CAS  Google Scholar 

  10. T. S. Pokidova, A. F. Shestakov, Russ. J. Phys. Chem. A, 2009, 83, 1860; DOI: https://doi.org/10.1134/S0036024409110090.

    Article  CAS  Google Scholar 

  11. E. T. Denisov, T. S. Pokidova, Russ. Chem. Rev., 2012, 81, 415; DOI: https://doi.org/10.1070/RC2012v081n05ABEH004221.

    Article  CAS  Google Scholar 

  12. E. T. Denisov, T. S. Pokidova, Petroleum Chemistry (Engl. Transl.), 2018, 58, 163; DOI: https://doi.org/10.1134/S0965544118030076.

    CAS  Google Scholar 

  13. T. S. Pokidova, N. S. Emelyanova, Russ. Chem. Bull., 2019, 68, 1640; DOI: https://doi.org/10.1007/s11172-019-2606-0.

    Article  CAS  Google Scholar 

  14. T. S. Pokidova, N. S. Emelyanova, Russ. Chem. Bull., 2020, 69, 2270; DOI: https://doi.org/10.1007/s11172-020-3044-8.

    Article  CAS  Google Scholar 

  15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford (CT), 2013.

    Google Scholar 

  16. J. Foresman, E. Frish, Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., Pittsburgh, 1995–1996, pp. 72, 173.

    Google Scholar 

  17. A. V. Mayorov, B. E. Krisyuk, Russ. Chem. Bull., 2021, 70, 1454; DOI: https://doi.org/10.1007/s11172-021-3239-7.

    Article  CAS  Google Scholar 

  18. E. T. Denisov, Kinet. Catal. (Engl. Transl.), 2008, 49, 313; DOI: https://doi.org/10.1134/S0023158408030014.

    Article  CAS  Google Scholar 

  19. N. W. C. Hon, Zh.-D. Chen, Zh.-F. Liu, J. Phys. Chem. A, 2002, 106, 6792; DOI: https://doi.org/10.1021/JP013406M.

    Article  CAS  Google Scholar 

  20. I. V. Aleksandrov, Theor. Exp. Chem. (Engl. Transl.), 1976, 12, 231; DOI: https://doi.org/10.1007/BF00527120.

    Article  Google Scholar 

  21. Handbook of Chemistry and Physics, Ed. D. R. Lide, CRC Press, Boca Raton, 2004–2005.

    Google Scholar 

  22. NIST Standard Reference Database 19A, Positive Ion Energetics, Version 2.02, Gaithersburg, 1994.

  23. F. D. Rossini, R. L. Montgomery, J. Chem. Thermodyn., 1978, 10, 465; DOI: https://doi.org/10.1016/0021-9614(78)90094-0.

    Article  CAS  Google Scholar 

  24. R. L. Montgomery, F. D. Rossini, J. Chem. Thermodyn., 1978, 10, 471; DOI: https://doi.org/10.1016/0021-9614(78)90095-2G.

    Article  CAS  Google Scholar 

  25. R. L. Montgomery, P. S. Engel, R. A. Leckonby, F. D. Rossini, M. Mansson, S. Szilagyi, J. W. Timberlake, J. Chem. Eng. Data, 1978, 23, 129; DOI: https://doi.org/10.1021/JE60077A02210.1021/je60077a022.

    Article  CAS  Google Scholar 

  26. W. Tsang, in Energetics of Free Radicals, Eds A. Greenberg, J. Liebman, Blackie Academic and Professional, New York, 1996, p. 22.

  27. D. R. Stull, E. F. Westrum, G. C. Sinke, The Chemical Thermodynamics of Organic Compounds, John Wiley and Sons, Inc., New York—London—Sydney—Toronto, 1969.

    Google Scholar 

  28. L. S. Kassel, Kinetics of Homogeneous Gas Reaction, New York, 1932, p. 196.

  29. H. S. Sandhu, J. Phys. Chem., 1968, 72, 1857; DOI: https://doi.org/10.1021/J100852A002.

    Article  CAS  Google Scholar 

  30. G. Geiseler, J. Hoffmann, J. Phys. Chem. Neue Folge, 1968, 57, 318; DOI: https://doi.org/10.1524/zpch.1968.57.3_6.318.

    Article  CAS  Google Scholar 

  31. A. U. Blackham, N. L. Eatough, J. Am. Chem. Soc., 1962, 84, 2922; DOI: https://doi.org/10.1021/ja00874a016.

    Article  CAS  Google Scholar 

  32. H. C. Ramsperger, J. Am. Chem. Soc., 1928, 50, 714; DOI: https://doi.org/10.1021/ja01390a013.

    Article  CAS  Google Scholar 

  33. J. P. Van Hook, A. V. Tobolsky, J. Am. Chem. Soc., 1958, 80, 779; DOI: https://doi.org/10.1021/ja01537a006.

    Article  CAS  Google Scholar 

  34. E. T. Denisov, Russ. Chem. Rev., 1997, 66, 859; DOI: https://doi.org/10.1070/RC1997v066n10ABEH000364.

    Article  Google Scholar 

  35. Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies, Boca Raton, CRC Press, 2007, p. 9.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Pokidova.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 927–933, May, 2022.

This work was carried out as part of the State Assignment under Contract No. AAAA-A19-119071190045-0.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokidova, T.S., Emelyanova, N.S. Decomposition reactions of azo compounds, as studied by quantum chemistry methods and the parabolic model. Russ Chem Bull 71, 927–933 (2022). https://doi.org/10.1007/s11172-022-3492-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3492-4

Key words

Navigation