Skip to main content
Log in

Femtochemistry methods for studying the photophysics and photochemistry of halide complexes of platinum metals

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The primary (ultrafast) photophysical and photochemical processes characteristic of the following halogen-containing complexes of platinum group metals were examined: hexahalide complexes (PtIVBr62−, PtIVCl62−, IrIVCl62−, IrIVBr62−, OsIVCl62−, and OsIVBr62), pseudohexahalide complex PtIV(SCN)62, and mixed diiodide complexes of PtIV. The historical and practical aspects of the photochemistry of platinum metals complexes are presented. The ultrafast (femtosecond) research methods and general features of ultrafast processes that occur in the presence of coordination compounds are outlined. The stages of target product transformation from the absorption of a light quantum to the formation of final products are considered. The levels of completeness of research for each of the systems examined are listed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hershel, Phil. Mag., 1832, 1, 58; DOI: https://doi.org/10.1080/14786443208647823.

    Google Scholar 

  2. V. Balsani, V. Carassiti, Photochemistry of Coordination Compounds, Academic Press, London—New York, 1970, 432 pp.

    Google Scholar 

  3. Concepts of Inorganic Photochemistry, Eds A. W. Adamson, P. D. Fleischauer, Wiley, New York, 1975, 439 pp.

    Google Scholar 

  4. A. I. Kryukov, S. Ya. Kuchmii, Osnovy fotokhimii koordinatsionnykh soedinenii [Foundations of Photochemistry of Coordination Compounds], Naukova Dumka, Kiev, 1990, 279 pp. (in Russian).

    Google Scholar 

  5. J. Sykora, J. Sima, Photochemistry of Coordination Compounds, Elsevier, Amsterdam—Oxford—New York—Tokyo, 1990, 225 pp.

    Book  Google Scholar 

  6. G. Porter, Proc. Roy. Soc. London, 1950, A200, 284; DOI: https://doi.org/10.1098/rspa.1950.0018.

    Google Scholar 

  7. L. S. Atabekyan, V. G. Avakyan, V. P. Markelov, T. A. Svyatoslavskaya, N. L. Svyatoslavsky, A. K. Chibisov, Russ. Chem. Bull., 2020, 69, 971; DOI: https://doi.org/10.1007/s11172-020-2857-9.

    Article  CAS  Google Scholar 

  8. L. S. Atabekyan, A. K. Chibisov, Russ. Chem. Bull., 2020, 69, 2101; DOI: https://doi.org/10.1007/s11172-020-3006-1.

    Article  CAS  Google Scholar 

  9. L. S. Atabekyan, N. A. Aleksandrova, S. P. Gromov, Russ. Chem. Bull., 2021, 70, 350; DOI: https://doi.org/10.1007/s11172-021-3092-8.

    Article  CAS  Google Scholar 

  10. A. H. Zewail, Femtochemistry: Ultrafast Dynamics of the Chemical Bond, World Scientific, Singapore, 1994, Vol. I, 604 pp.

    Book  Google Scholar 

  11. Top. Curr. Chem., Eds V. Balzani, S. Campagna, Springer-Verlag, Berlin—Heidelberg, Vol. 280, Photochemistry and Photophysics of Coordination Compounds I, 2007, 273 pp.

    Google Scholar 

  12. V. F. Plyusnin, E. M. Glebov, V. P. Grivin, N. M. Bazhin, I. P. Pozdnyakov, Fotokhimiya galogenidnykh kompleksov ionov perekhodnykh i blagorodnykh metallov [Photochemistry of Halide Complexes of Transition and Noble Metal Ions], Izd. SO RAN, Novosibirsk, 2020, 411 pp. (in Russian).

    Google Scholar 

  13. A. N. Kalenchuk, K. I. Maslakov, T. V. Bogdan, P. A. Chernavsky, V. I. Bogdan, Russ. Chem. Bull., 2021, 70, 323; DOI: https://doi.org/10.1007/s11172-021-3088-4.

    Article  CAS  Google Scholar 

  14. V. M. Akhmedov, N. E. Melnikova, A. Z. Babaeva, G. G. Nurullaev, Vs. M. Akhmedov, T. B. Tagiev, Russ. Chem. Bull., 2021, 70, 677; DOI: https://doi.org/10.1007/s11172-021-3136-0.

    Article  CAS  Google Scholar 

  15. A. Fujishima, K. Honda, Nature, 1972, 238, 37; DOI: https://doi.org/10.1038/238037a0.

    Article  CAS  PubMed  Google Scholar 

  16. A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1, 1; DOI: https://doi.org/10.1016/S1389-5567(00)00002-2.

    Article  CAS  Google Scholar 

  17. K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 1, 2005, 44, 8269; DOI: https://doi.org/10.1143/JJAP.44.8269.

    Article  CAS  Google Scholar 

  18. K. Nakata, A. Fujishima, J. Photochem. Photobiol. C: Photochem. Rev., 2012, 13, 169; DOI: https://doi.org/10.1016/j.jphotochemrev.2012.06.001.

    Article  CAS  Google Scholar 

  19. L. Zang, W. Macyk, C. Lange, W. F. Mayer, C. Antonius, D. Meissner, H. Kish, Chem. Eur. J., 2000, 6, 379; DOI: https://doi.org/10.1002/(SICI)1521-3765(20000117)6:2%3C379::AIDCHEM379%3E3.0.CO;2-Z.

    Article  CAS  PubMed  Google Scholar 

  20. C. Harris, P. V. Kamat, ACS Nano, 2010, 4, 7321; DOI: https://doi.org/10.1021/ja00307a054.

    Article  CAS  PubMed  Google Scholar 

  21. H. Kish, Adv. Inorg. Chem, 2011, 63, 371–393.

    Article  CAS  Google Scholar 

  22. F. Mahlamvana, R. J. Kriek, Appl. Catal. B: Environ., 2014, 148–149, 387; DOI: https://doi.org/10.1016/j.apcatb.2013.11.011.

    Article  CAS  Google Scholar 

  23. A. Vogler, J. Hlavatsh, Angew. Chem., Int. Ed., 1983, 22, 154; DOI: https://doi.org/10.1002/anie.198301542.

    Article  Google Scholar 

  24. R. E. Cameron, A. B. Bocarsly, J. Am. Chem. Soc., 1985, 107, 6116; DOI: https://doi.org/10.1021/ja00307a054.

    Article  CAS  Google Scholar 

  25. R. E. Cameron, A. B. Bocarsly, Inorg. Chem., 1986, 25, 2910; DOI: https://doi.org/10.1021/ic00236a053.

    Article  CAS  Google Scholar 

  26. M. Vojnicki, P. Kwolek, J. Photochem. Photobiol. A: Chem., 2016, 314, 133; DOI: https://doi.org/10.1016/j.jphotochem.2015.08.020.

    Article  CAS  Google Scholar 

  27. M. Sakamoto, M. Fujitsuka, T. Majima, J. Photochem. Photobiol. C: Photochem. Rev., 2009, 10, 33; DOI: https://doi.org/10.1016/j.jphotochemrev.2008.11.002.

    Article  CAS  Google Scholar 

  28. H. Einaga, M. Harada, Langmuir, 2005, 21, 2578; DOI: https://doi.org/10.1021/la0475730.

    Article  CAS  PubMed  Google Scholar 

  29. M. Harada, Y. Kamigaito, Langmuir, 2012, 28, 2415; DOI: https://doi.org/10.1021/la204031j.

    Article  CAS  PubMed  Google Scholar 

  30. R. V. Borisov, O. V. Belousov, A. M. Zhizhaev, M. N. Likhatski, N. V. Belousova, Russ. Chem. Bull., 2021, 70, 1474; DOI: https://doi.org/10.1007/s11172-021-3242-z.

    Article  CAS  Google Scholar 

  31. V. Tjoa, J. Chua, S. S. Pramana, J. Wei, S. G. Mhaisalkar, N. Mathews, ACS Appl. Mater. Interfaces, 2012, 4, 3447; DOI: https://doi.org/10.1021/am300437g.

    Article  CAS  PubMed  Google Scholar 

  32. S. B. Brown, E. A. Brown, I. Walker, Lancet Oncol., 2004, 5, 497; DOI: https://doi.org/10.1016/S1470-2045(04)01529-3.

    Article  CAS  PubMed  Google Scholar 

  33. P. J. Bednarski, F. S. Mackay, P. J. Sadler, Anti-Cancer Agents Med. Chem., 2007, 7, 75; DOI: https://doi.org/10.2174/187152007779314053.

    Article  CAS  Google Scholar 

  34. J. Pracharova, L. Zerzankova, J. Stepankova, O. Novakova, N. J. Farrer, P. J. Sadler, V. Brabec, J. Kasparkova, Chem. Res. Toxicol., 2012, 25, 1099; DOI: https://doi.org/10.1021/tx300057y.

    Article  CAS  PubMed  Google Scholar 

  35. J. Gurruchaga-Pereda, A. Martínez, A. Terenzi, L. Salassa, Inorg. Chim. Acta, 2019, 495, 118981; DOI: https://doi.org/10.1016/j.ica.2019.118981.

    Article  CAS  Google Scholar 

  36. J. Du, Y. Wei, Y. Zhao, F. Xu, Y. Wang, W. Zheng, Q. Luo, M. Wang, F. Wang, Inorg. Chem., 2018, 57, 5575; DOI: https://doi.org/10.1021/acs.inorgchem.8b00529.

    Article  CAS  PubMed  Google Scholar 

  37. B. Rosenberg, L. Vancamp, J. E. Trosko, V. H. Mansour, Nature (London), 1969, 222, 385; DOI: https://doi.org/10.1038/222385a0.

    Article  CAS  Google Scholar 

  38. S. V. Kurmaz, N. V. Fadeeva, B. S. Fedorov, G. I. Kozub, V. A. Kurmaz, V. M. Ignat’ev, N. S. Emel’yanova, Russ. Chem. Bull., 2021, 70, 1832; DOI: https://doi.org/10.1007/s11172-021-3289-x.

    Article  CAS  Google Scholar 

  39. A. Vlcek, Jr., Coord. Chem. Rev., 2000, 200–202, 933; DOI: https://doi.org/10.1016/S0010-8545(00)00308-8.

    Article  Google Scholar 

  40. J. K. McCusker, Acc. Chem. Res., 2003, 36, 876; DOI: https://doi.org/10.1021/ja00307a054.

    Article  CAS  PubMed  Google Scholar 

  41. L. S. Forster, Coord. Chem. Rev., 2006, 250, 2023; DOI: https://doi.org/10.1016/j.ccr.2006.01.023.

    Article  CAS  Google Scholar 

  42. E. A. Juban, A. L. Smeigh, J. E. Monat, J. K. McCusker, Coord. Chem. Rev., 2006, 250, 1783; DOI: https://doi.org/10.1016/j.ccr.2006.02.010.

    Article  CAS  Google Scholar 

  43. S. Archer, J. A. Weinstein, Coord. Chem. Rev., 2012, 256, 2530; DOI: https://doi.org/10.1016/j.ccr.2012.07.010.

    Article  CAS  Google Scholar 

  44. J. P. Lomont, S. C. Nguyen, C. B. Harris, Acc. Chem. Res., 2014, 47, 1634; DOI: https://doi.org/10.1021/ja00307a054.

    Article  CAS  PubMed  Google Scholar 

  45. M. Chergui, Dalton Trans., 2012, 41, 13022; DOI: https://doi.org/10.1039/c2dt30764b.

    Article  CAS  PubMed  Google Scholar 

  46. M. Chergui, Acc. Chem. Res., 2015, 48, 801; DOI: https://doi.org/10.1021/ar500358q.

    Article  CAS  PubMed  Google Scholar 

  47. M. Chergui, E. Colet, Chem. Rev., 2017, 117, 11025; DOI: https://doi.org/10.1021/acs.chemrev.6b00831.

    Article  CAS  PubMed  Google Scholar 

  48. M. Chergui, Coord. Chem. Rev., 2018, 372, 52; DOI: https://doi.org/10.1016/j.ccr.2018.05.021.

    Article  CAS  Google Scholar 

  49. M. Chergui, J. Chem. Phys., 2019, 150, 070901; DOI: https://doi.org/10.1063/1.5082644.

    Article  PubMed  CAS  Google Scholar 

  50. E. M. Glebov, I. P. Pozdnyakov, V. F. Plyusnin, I. Khmelinskii, J. Photochem. Photobiol. C: Photochem. Rev., 2015, 24, 1; DOI: https://doi.org/10.1016/j.jphotochemrev.2015.05.003.

    Article  CAS  Google Scholar 

  51. N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V. Shank, J. K. McCusker, Science, 1997, 275(5296), 54; DOI: https://doi.org/10.1126/science.275.5296.54.

    Article  CAS  PubMed  Google Scholar 

  52. C. Consani, M. Premont-Schwarz, A. Elnahhas, C. Bressler, F. van Mourik, A. Cannizzo, M. Chergui, Angew. Chem., Int. Ed., 2009, 48, 7184; DOI: https://doi.org/10.1002/anie.200902728.

    Article  CAS  Google Scholar 

  53. A. Mokhtari, J. Chesnoy, A. Laubereau, Chem. Phys. Lett., 1989, 155, 593; DOI: https://doi.org/10.1016/0009-2614(89)87479-2.

    Article  CAS  Google Scholar 

  54. M. Vengris, M. A. van der Horst, G. Zgrablic, I. H. M. van Stokkum, S. Haacke, M. Chergui, K. J. Hellingwerf, R. van Grondelle, D. S. Larsen, Biophys. J., 2004, 87, 1848; DOI: https://doi.org/10.1529/biophysj.104.043224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. G. Zgrablic, K. Voitchovsky, M. Kindermann, S. Haacke, M. Chergui, Biophys. J., 2005, 88, 2779; DOI: https://doi.org/10.1529/biophysj.104.046094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. P. Hamm, M. Lim, R. M. Hochstrasser, J. Chem. Phys., 1997, 107, 10523; DOI: https://doi.org/10.1063/1.474216.

    Article  CAS  Google Scholar 

  57. P. Hamm, M. Lim, R. M. Hochstrasser, J. Phys. Chem. B, 1998, 102, 6123; DOI: https://doi.org/10.1021/ar500358q.

    Article  CAS  Google Scholar 

  58. P. Hamm, M. Lim, R. M. Hochstrasser, Chem. Phys. Lett., 1998, 81, 5326; DOI: https://doi.org/10.1103/PhysRevLett.81.5326.

    CAS  Google Scholar 

  59. V. Balzani, A. Juris, Coord. Chem. Rev., 2001, 211, 97; DOI: https://doi.org/10.1016/S0010-8545(00)00274-5.

    Article  CAS  Google Scholar 

  60. A. Cannizzo, Phys. Chem. Chem. Phys., 2012, 14, 11205; DOI: https://doi.org/10.1039/c2cp40567a.

    Article  CAS  PubMed  Google Scholar 

  61. R. Borrego-Varillas, D. C. Teles-Ferreira, A. Nenov, I. Conti, L. Ganzer, C. Manzoni, M. Garavelli, A. Maria de Paula, G. Cerullo, J. Am. Chem. Soc., 2018, 140, 16087; DOI: https://doi.org/10.1021/jacs.8b07057.

    Article  CAS  PubMed  Google Scholar 

  62. G. Auböck, C. Consani, R. Monni, A. Cannizzo, F. van Mourik, M. Chergui, Rev. Sci. Instrum., 2012, 83, 093105; DOI: https://doi.org/10.1063/1.4750978.

    Article  PubMed  CAS  Google Scholar 

  63. G. Auböck, C. Consani, F. van Mourik, M. Chergui, Opt. Lett., 2012, 37, 2337; DOI: https://doi.org/10.1364/OL.37.002337.

    Article  PubMed  Google Scholar 

  64. G. Auböck, M. Chergui, Nat. Chem., 2015, 7, 629; DOI: https://doi.org/10.1038/NCHEM.2305.

    Article  PubMed  CAS  Google Scholar 

  65. E. Baldini, T. Palmieri, E. Pomarico, G. Auböck, M. Chergui, ACS Photonics, 2018, 5, 1241; DOI: https://doi.org/10.1021/acsphotonics.7b00945.

    Article  CAS  Google Scholar 

  66. P. Hamm, M. Lim, W. F. DeGrado, R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA, 1999, 96, 2036; DOI: https://doi.org/10.1073/pnas.96.5.2036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. B. Winter, M. Faubel, Chem. Rev., 2006, 106, 1176; DOI: https://doi.org/10.1021/cr040381p.

    Article  CAS  PubMed  Google Scholar 

  68. O. Link, E. Vohringer-Martinez, E. Lugovoj, Y. Liu, K. Siefermann, M. Faubel, H. Grubmuller, R. B. Gerber, Y. Millerd, B. Abel, Faraday Discuss., 2009, 141, 67; DOI: https://doi.org/10.1039/b811659h.

    Article  CAS  PubMed  Google Scholar 

  69. O. Link, E. Lugovoj, K. Siefermann, Y. Liu, M. Faubel, B. Abel, Appl. Phys. A, 2009, 96, 117; DOI: https://doi.org/10.1007/s00339-009-5179-1.

    Article  CAS  Google Scholar 

  70. X. F. Li, A. L. Huillier, M. Ferray, L. A. Lompre, G. Mainfray, Phys. Rev. A, 1989, 39, 5751; DOI: https://doi.org/10.1103/PhysRevA.39.575.

    Article  CAS  Google Scholar 

  71. E. Seres, J. Seres, F. Krausz, C. Spielmann, Phys. Rev. Lett., 2004, 92, 163002; DOI: https://doi.org/10.1103/PhysRevLett.92.163002.

    Article  PubMed  CAS  Google Scholar 

  72. O. Link, E. Lugovoj, K. Siefermann, Y. Liu, M. Faubel, B. Abel, Appl. Phys. A, 2009, 96, 117; DOI https://doi.org/10.1007/s00339-009-5179-1.

    Article  CAS  Google Scholar 

  73. J. Ojeda, C. A. Arrell, J. Grilj, F. Frassetto, L. Mewes, H. Zhang, F. van Mourik, L. Poletto, M. Chergui, Struct. Dynamic, 2016, 3, 023602; DOI: https://doi.org/10.1063/1.4933008.

    Article  CAS  Google Scholar 

  74. Ch. A. Arrell, J. Ojeda, L. Longetti, A. Crepaldi, S. Roth, G. Gatti, A. Clarkc, F. van Mourik, M. Drabbels, M. Grioni, M. Chergui, Chimia, 2017, 71, 268; DOI: https://doi.org/10.2533/chimia.2017.268.

    Article  CAS  PubMed  Google Scholar 

  75. T. Anderson, I. V. Tomov, P. M. Rentzepis, J. Chem. Phys., 1993, 99, 869; DOI: https://doi.org/10.1063/1.465350.

    Article  CAS  Google Scholar 

  76. C. J. Milne, T. J. Penfold, M. Chergui, Coord. Chem. Rev., 2014, 277–278, 44; DOI: https://doi.org/10.1016/j.ccr.2014.02.013.

    Article  CAS  Google Scholar 

  77. M. Chergui, Struct. Dynamics, 2016, 3, 031001; DOI: https://doi.org/10.1063/1.4953104.

    Article  CAS  Google Scholar 

  78. T. Elsaesser, M. Woerner, Acta Crystallogr. A: Found. Crystallogr., 2010, 66, 168; DOI: https://doi.org/10.1107/S0108767309048181.

    Article  CAS  Google Scholar 

  79. R. W. Schoenlein, S. Chattopadhyay, H. H. W. Chong, T. E. Glover, P. A. Heimann, C. V. Shank, A. A. Zholents, M. S. Zolotorev, Science, 2000, 287(5461), 2237; DOI: https://doi.org/10.1126/science.287.5461.2237.

    Article  CAS  PubMed  Google Scholar 

  80. J. Ojeda, Ch. A. Arrell, L. Longetti, M. Chergui, J. Helbing, Phys. Chem. Chem. Phys., 2017, 19, 17052; DOI: https://doi.org/10.1039/c7cp03337k.

    Article  CAS  PubMed  Google Scholar 

  81. M. Reinhard, T. Penfold, F. Lima, J. Rittmann, M. Rittmann-Frank, R. Abela, I. Tavernelli, U. Rothlisberger, C. Milne, M. Chergui, Struct. Dyn., 2014, 1, 024901; DOI: https://doi.org/10.1063/1.4871751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. C. K. Jorgensen, Mol. Phys., 1959, 2, 309; DOI: https://doi.org/10.1080/00268975900100291.

    Article  CAS  Google Scholar 

  83. K. P. Balashev, Koord. Khim. [Sov. J. Coord. Chem.], 1989, 15, 116 (in Russian).

    CAS  Google Scholar 

  84. V. Balzani, M. F. Manfrin, L. Moggi, Inorg. Chem., 1967, 6, 354; DOI: https://doi.org/10.1021/ic50048a036.

    Article  CAS  Google Scholar 

  85. E. M. Glebov, V. F. Plyusnin, V. P. Grivin, A. B. Venediktov, S. V. Korenev, Russ. Chem. Bull., 2007, 56, 2357; DOI: https://doi.org/10.1007/s11172-007-0375-7.

    Article  CAS  Google Scholar 

  86. I. P. Pozdnyakov, E. M. Glebov, V. F. Plyusnin, N. V. Tkachenko, H. Lemmetyinen, Chem. Phys. Lett., 2007, 442, 78; DOI: https://doi.org/10.1016/j.cplett.2007.05.070.

    Article  CAS  Google Scholar 

  87. I. L. Zheldakov, M. N. Ryazantsev, A. N. Tarnovsky, J. Phys. Chem. Lett., 2011, 2, 1540; DOI: https://doi.org/10.1021/jz200239b.

    Article  CAS  Google Scholar 

  88. I. L. Zheldakov, Ph. D. Thesis, Bowling Green State University, Bowling Green, Ohio, USA, 2010.

  89. E. M. Glebov, A. V. Kolomeets, I. P. Pozdnyakov, V. P. Grivin, V. F. Plyusnin, N. V. Tkachenko, H. Lemmetyinen, Russ. Chem. Bull., 2013, 62, 1540; DOI: https://doi.org/10.1007/s11172-013-0221-z

    Article  CAS  Google Scholar 

  90. I. P. Pozdnyakov, E. M. Glebov, S. G. Matveeva, V. F. Plyusnin, A. A. Melnikov, S. V. Chekalin, Russ. Chem. Bull., 2015, 64, 1784; DOI: https://doi.org/10.1007/s11172-015-1072-6.

    Article  CAS  Google Scholar 

  91. S. Gomez, M. Heindl, A. Szabadi, L. Gonzalez, J. Phys. Chem. A, 2019, 123, 8321; DOI: https://doi.org/10.1021/acs.jpca.9b06103.

    Article  CAS  PubMed  Google Scholar 

  92. A. A. Melnikov, I. P. Pozdnyakov, S. V. Chekalin, E. M. Glebov, Mendeleev Commun., 2020, 30, 509; DOI: https://doi.org/10.1016/j.mencom.2020.07.036.

    Article  CAS  Google Scholar 

  93. E. M. Glebov, A. V. Kolomeets, I. P. Pozdnyakov, V. F. Plyusnin, V. P. Grivin, N. V. Tkachenko, H. Lemmetyinen, RSC Adv., 2012, 2, 5768; DOI: https://doi.org/10.1039/C2RA20715J.

    Article  CAS  Google Scholar 

  94. E. M. Glebov, V. F. Plyusnin, A. B. Venediktov, S. V. Korenev, Russ. Chem. Bull., 2003, 52, 1305; DOI: https://doi.org/10.1023/A:1024810724324.

    Article  CAS  Google Scholar 

  95. R. C. Wright, G. S. Laurence, J. Chem. Soc., Chem. Commun., 1972, 132; DOI: https://doi.org/10.1039/C39720000132.

  96. K. P. Balashev, V. V. Vasil’ev, A. M. Zimnyakov, G. A. Shagisultanova, Koord. Khim. [Sov. J. Coord. Chem.], 1984, 10, 976 (in Russian).

    CAS  Google Scholar 

  97. K. P. Balashev, I. I. Blinov, G. A. Shagisultanova, Zh. Neorg. Khim. [Sov. J. Inorg. Chem.], 1987, 32, 2470 (in Russian).

    CAS  Google Scholar 

  98. I. V. Znakovskaya, Yu. A. Sosedova, E. M. Glebov, V. P. Grivin, V. F. Plyusnin, Photochem. Photobiol. Sci., 2005, 4, 897; DOI: https://doi.org/10.1039/b509587e.

    Article  CAS  PubMed  Google Scholar 

  99. S. G. Matveeva, V. P. Grivin, V. F. Plyusnin, D. B. Vasilchenko, E. M. Glebov, J. Photochem. Photobiol. A: Chem., 2018, 359, 80; DOI: https://doi.org/10.1016/j.jphotochem.2018.03.038.

    Article  CAS  Google Scholar 

  100. K. P. Balashev, I. I. Blinov, G. A. Shagisultanova, Kinet. Catal., 1987, 28, 696.

    Google Scholar 

  101. S. G. Matveeva, I. P. Pozdnyakov, V. P. Grivin, V. F. Plyusnin, A. S. Mereshchenko, A. A. Melnikov, S. V. Chekalin, E. M. Glebov, J. Photochem. Photobiol. A: Chem., 2016, 325, 13; DOI: https://doi.org/10.1016/j.jphotochem.2016.03.027.

    Article  CAS  Google Scholar 

  102. O. Monreal, T. Esmaeli, P. E. Hoggard, Inorg. Chim. Acta, 1997, 265, 279; DOI: https://doi.org/10.1016/S0020-1693(97)05712-5.

    Article  CAS  Google Scholar 

  103. P. E. Hoggard, A. Vogler, Inorg. Chim. Acta, 2003, 348, 229; DOI: https://doi.org/10.1016/S0020-1693(03)00004-5.

    Article  CAS  Google Scholar 

  104. V. P. Grivin, I. V. Khmelinski, V. F. Plyusnin, I. I. Blinov, K. P. Balashev, J. Photochem. Photobiol. A: Chem., 1990, 51, 167; DOI: https://doi.org/10.1016/1010-6030(90)87051-C.

    Article  CAS  Google Scholar 

  105. V. P. Grivin, I. V. Khmelinski, V. F. Plyusnin, J. Photochem. Photobiol. A: Chem., 1990, 51, 379; DOI: https://doi.org/10.1016/1010-6030(90)87072-J.

    Article  CAS  Google Scholar 

  106. V. P. Grivin, I. V. Khmelinski, V. F. Plyusnin, J. Photochem. Photobiol. A: Chem., 1991, 59, 153; DOI: https://doi.org/10.1016/1010-6030(91)87003-E.

    Article  CAS  Google Scholar 

  107. E. M. Glebov, V. F. Plyusnin, High Energy Chem., 2021, 55, 203; DOI: https://doi.org/10.31857/S0023119321030037.

    Article  CAS  Google Scholar 

  108. A. Goursot, A. D. Kirk, W. L. Waltz, G. B. Porter, D. K. Sharma, Inorg. Chem., 1987, 26, 14; DOI: https://doi.org/10.1021/ic00248a004.

    Article  CAS  Google Scholar 

  109. A. W. Adamson, A. H. Sporer, J. Am. Chem. Soc., 1958, 80, 3865; DOI: https://doi.org/10.1021/ja01548a016.

    Article  CAS  Google Scholar 

  110. J. F. Endicott, G. J. Ferraundi, J. R. Barber, J. Phys. Chem., 1975, 79, 630; DOI: https://doi.org/10.1021/j100573a017.

    Article  CAS  Google Scholar 

  111. A. Goursot, H. Chermette, E. Peigault, M. Chanon, W. L. Waltz, Inorg. Chem., 1984, 23, 3618; DOI: https://doi.org/10.1021/ic00190a038.

    Article  CAS  Google Scholar 

  112. A. Goursot, H. Chermette, W. L. Waltz, J. Lillie, Inorg. Chem., 1989, 28, 2241; DOI: https://doi.org/10.1021/ic00311a002.

    Article  CAS  Google Scholar 

  113. W. L. Waltz, J. Lillie, A. Goursot, H. Chermette, Inorg. Chem., 1989, 28, 2247; DOI: https://doi.org/10.1021/ic00311a003.

    Article  CAS  Google Scholar 

  114. J. Griffiths, J. Owen, Proc. Roy. Soc. London, 1954, A219, 96; DOI: https://doi.org/10.1098/rspa.1954.0241.

    Google Scholar 

  115. D. S. Budkina, F. T. Gemeda, S. M. Matveev, A. N. Tarnovsky, Phys. Chem. Chem. Phys., 2020, 22, 17351; DOI: https://doi.org/10.1039/d0cp00438c.

    Article  CAS  PubMed  Google Scholar 

  116. L. Moggi, G. Varani, M. F. Manfrin, V. Balzani, Inorg. Chim. Acta, 1970, 4, 335; DOI: https://doi.org/10.1016/S0020-1693(00)93300-0.

    Article  CAS  Google Scholar 

  117. E. M. Glebov, V. F. Plyusnin, N. V. Tkachenko, H. Lemmetyinen, Chem. Phys., 2000, 257, 79; DOI: https://doi.org/10.1016/S0301-0104(00)00140-3.

    Article  CAS  Google Scholar 

  118. E. M. Glebov, I. P. Pozdnyakov, A. A. Melnikov, S. V. Chekalin, J. Photochem. Photobiol. A: Chem., 2014, 292, 34; DOI: https://doi.org/10.1016/j.jphotochem.2014.07.011.

    Article  CAS  Google Scholar 

  119. E. M. Glebov, V. F. Plyusnin, Russ. J. Coord. Chem., 1998, 24, 507.

    CAS  Google Scholar 

  120. E. M. Glebov, V. F. Plyusnin, N. I. Sorokin, V. P. Grivin, A. B. Venediktov, H. Lemmetyinen, J. Photochem. Photobiol. A: Chem., 1995, 90, 31; DOI: https://doi.org/10.1016/1010-6030(95)04070-V.

    Article  CAS  Google Scholar 

  121. E. M. Glebov, V. F. Plyusnin, V. L. Vyazovkin, A. B. Venediktov, J. Photochem. Photobiol. A: Chem., 1997, 107, 93; DOI: https://doi.org/10.1016/S1010-6030(97)00061-0.

    Article  CAS  Google Scholar 

  122. E. M. Glebov, V. F. Plyusnin, V. P. Grivin, Yu. V. Ivanov, N. V. Tkachenko, H. Lemmetyinen, Int. J. Chem. Kinet., 1998, 30, 711; DOI: https://doi.org/10.1002/(SICI)1097-4601(1998)30:10%3C711::AID-KIN3%3E3.0.CO;2-Y.

    Article  CAS  Google Scholar 

  123. E. M. Glebov, V. F. Plyusnin, V. L. Vyazovkin, High Energy Chem., 1999, 33, 390.

    CAS  Google Scholar 

  124. A. V. Litke, I. P. Pozdnyakov, E. M. Glebov, V. F. Plyusnin, N. V. Tkachenko, H. Lemmetyinen, Chem. Phys. Lett., 2009, 477, 304; DOI: https://doi.org/10.1016/j.cplett.2009.07.020.

    Article  CAS  Google Scholar 

  125. E. M. Glebov, A. V. Kolomeets, I. P. Pozdnyakov, V. F. Plyusnin, N. V. Tkachenko, H. Lemmetyinen, Photochem. Photobiol. Sci., 2011, 10, 1709; DOI: https://doi.org/10.1039/c1pp05138e.

    Article  CAS  PubMed  Google Scholar 

  126. S. M. Matveev, D. S. Budkina, I. L. Zheldakov, M. R. Phelan, Ch. M. Hicks, A. N. Tarnovsky, J. Chem. Phys., 2019, 150, 054302; DOI: https://doi.org/10.1063/1.5079754.

    Article  PubMed  CAS  Google Scholar 

  127. C. Rensing, O. T. Ehrler, J.-P. Yang, A.-N. Unterreiner, M. M. Kappes, J. Chem. Phys., 2009, 130, 234306; DOI: https://doi.org/10.1063/1.3148377.

    Article  PubMed  CAS  Google Scholar 

  128. P. N. Shatz, in Electronic States of Inorganic Compounds, Ed. P. B. Day, D. Reidel Publishing Company, Dordrecht, Holland, 1975, V. 20, p. 223.

  129. E. M. Glebov, I. P. Pozdnyakov, S. G. Matveeva, A. A. Melnikov, S. V. Chekalin, M. V. Rogozina, V. V. Yudanov, V. P. Grivin, V. F. Plyusnin, Photochem. Photobiol. Sci., 2017, 16, 220; DOI: https://doi.org/10.1039/C6PP00382F.

    Article  CAS  PubMed  Google Scholar 

  130. M. V. Rogozina, S. G. Matveeva, E. M. Glebov, R. G. Fedunov, Photochem. Photobiol. Sci., 2019, 18, 1122; DOI: https://doi.org/10.1039/C8PP00553B.

    Article  CAS  PubMed  Google Scholar 

  131. E. M. Glebov, S. G. Matveeva, I. P. Pozdnyakov, V. P. Grivin, V. F. Plyusnin, D. B. Vasilchenko, T. E. Romanova, A. A. Melnikov, S. V. Chekalin, R. G. Fedunov, Photochem. Photobiol. Sci., 2020, 19, 1569; DOI: https://doi.org/10.1039/D0PP00244E.

    Article  CAS  PubMed  Google Scholar 

  132. G. C. Allen, R. Al-Mobarak, G. A. M. El-Sharkawy, K. D. Warren, Inorg. Chem., 1972, 11, 787; DOI: https://doi.org/10.1021/ic50110a026.

    Article  CAS  Google Scholar 

  133. A. M. Golub, H. Kohler, V. V. Skopenko, Chemistry of Pseudohalides, Elsevier, Amsterdam—Oxford—New York—Tokyo, 1986, 476 pp.

    Google Scholar 

  134. V. S. Sastri, C. H. Langford, J. Inorg. Nucl. Chem., 1974, 36, 2616; DOI: https://doi.org/10.1016/0022-1902(74)80484-7.

    Article  CAS  Google Scholar 

  135. E. M. Glebov, V. P. Chernetsov, V. P. Grivin, V. F. Plyusnin, A. B. Venediktov, Mendeleev Commun., 2014, 24, 111; DOI: https://doi.org/10.1016/j.mencom.2014.02.016.

    Article  CAS  Google Scholar 

  136. E. M. Glebov, I. P. Pozdnyakov, V. P. Chernetsov, V. P. Grivin, A. B. Venediktov, A. A. Melnikov, S. V. Chekalin, V. F. Plyusnin, Russ. Chem. Bull., 2017, 66, 418; DOI: https://doi.org/10.1007/s11172-017-1749-0.

    Article  CAS  Google Scholar 

  137. E. M. Glebov, I. P. Pozdnyakov, D. B. Vasilchenko, A. V. Zadesenets, A. A. Melnikov, I. M. Magin, V. P. Grivin, S. V. Chekalin, V. F. Plyusnin, J. Photochem. Photobiol. A: Chem., 2018, 354, 78; DOI: https://doi.org/10.1016/j.jphotochem.2017.06.036.

    Article  CAS  Google Scholar 

  138. E. M. Glebov, I. P. Pozdnyakov, I. M. Magin, V. P. Grivin, V. F. Plyusnin, D. B. Vasilchenko, A. V. Zadesenets, A. A. Melnikov, S. V. Chekalin, Russ. Chem. Bull., 2019, 68, 1532; DOI: https://doi.org/10.1007/s11172-019-2588-y.

    Article  CAS  Google Scholar 

  139. E. M. Glebov, V. P. Grivin, D. B. Vasilchenko, A. V. Zadesenets, V. F. Plyusnin, High Energy Chem. (Engl. Transl.), 2017, 51, 409; DOI: https://doi.org/10.1134/S0018143917060078.

    Article  CAS  Google Scholar 

  140. W. G. Fisher, W. P. Partridge, Jr., C. Dees, E. A. Wachter, Photochem. Photobiol., 1997, 66, 141; DOI: https://doi.org/10.1111/j.1751-1097.1997.tb08636.x.

    Article  CAS  PubMed  Google Scholar 

  141. Q. Zhou, H. Zhao, Y. Zhao, Y. Fang, D. Chen, J. Ren, X. Wang, Y. Wang, Y. Gu, F. Wu, J. Med. Chem., 2015, 58, 7949; DOI: https://doi.org/10.1021/acs.jmedchem.5b00731.

    Article  CAS  Google Scholar 

  142. E. M. Boreham, L. Jones, A. N. Swinburne, M. Blanchard-Desce, V. Hugues, C. Terrun, F. Miomandre, G. Lemercier, L. S. Natrajan, Dalton Trans., 2015, 44, 16127; DOI: https://doi.org/10.1039/c5dt01855b.

    Article  CAS  PubMed  Google Scholar 

  143. A. A. Shushakov, I. P. Pozdnyakov, V. P. Grivin, V. F. Plyusnin, D. B. Vasilchenko, A. V. Zadesenets, A. A. Melnikov, S. V. Chekalin, E. M. Glebov, Dalton Trans., 2017, 46, 9440; DOI: https://doi.org/10.1039/C7DT01529A.

    Article  CAS  PubMed  Google Scholar 

  144. R. R. Vernooij, T. Joshi, M. D. Horbury, B. Graham, E. I. Izgorodina, V. G. Stavros, P. J. Sadler, L. Spiccia, B. R. Wood, Chem. Eur. J., 2018, 24, 5790; DOI: https://doi.org/10.1002/chem.201705349.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Glebov.

Additional information

Based on the materials of the XXVIII International Chugaev Conference on Coordination Chemistry and XVIII International Conference “Spectroscopy of Coordination Compounds” (October 3–8, 2021, Tuapse, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 858–877, May, 2022.

This work was financially supported by the Russian Science Foundation (Project No. 22-33-00248).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glebov, E.M. Femtochemistry methods for studying the photophysics and photochemistry of halide complexes of platinum metals. Russ Chem Bull 71, 858–877 (2022). https://doi.org/10.1007/s11172-022-3486-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3486-2

Key words

Navigation