Skip to main content
Log in

Synthesis of multi-spiny gold nanoparticles of controlled shape and their use as a SERS substrate for the detection of pesticide residues

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Plasmonic gold nanoparticles of different shape attract much interest due to their unique physicochemical properties. Compared to gold nanorods and gold nanospheres, multi-spiny gold nanoparticles (AuNPs) with rough surfaces have higher adsorptivity and SERS activity. However, at present, one of the greatest challenges is effective tuning the density of spines of AuNPs. In this work, we describe a synthesis of AuNPs with a tunable number of spines. Furthermore, we propose a new mechanism to explain the causes of morphological evolution of AuNPs. The synthesized AuNPs with optimum number of spines exhibit extremely high sensitivity to 4-aminothiophenol, its lower limit of detection (LOD) is almost 1 nmol L−1. The SERS spectroscopy with prepared AuNPs was used to detect thiram residues in grapes, and LOD was lower than 1 µmol L−1. These results demonstrate that AuNPs are excellent SERS substrates for detection of chemical contaminants in food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Willets, R. P. V. Duyne, Annu. Rev. Phys. Chem., 2007, 58, 267.

    Article  CAS  Google Scholar 

  2. S. Schlücker, Angew. Chem., Int. Ed., 2014, 53, 4756.

    Article  Google Scholar 

  3. G. Lu, L. Hou, J. Zhang, T. Y. Zhang, J. Liu, H. M. Shen, C. X. Luo, C. L. Luo, Q. H. Gong, J. Phys. Chem. C, 2012, 116, 25509.

    Article  CAS  Google Scholar 

  4. Y. Cheng, A. C. Samia, C. Burda, J. Am. Chem. Soc., 2008, 130, 10643.

    Article  CAS  Google Scholar 

  5. Q. Q. Ding, H. J. Zhou, H. J. Zhao, J. Mater. Chem. A, 2016, 4, 8866.

    Article  CAS  Google Scholar 

  6. Y. Sun, Y. Xia, Science, 2003, 298, 2176.

    Article  Google Scholar 

  7. A. V. Simakin, V. V. Voronov, G. A. Shafeev, R. Brayner, F. Bozon-Verduraz, Chem. Phys. Lett., 2001, 348, 182.

    Article  CAS  Google Scholar 

  8. J. G. Hinman, A. J. Stork, J. A. Varnell, A. A. Gewirth, C. J. Murphy, Faraday Discuss., 2016, 191, 9.

    Article  CAS  Google Scholar 

  9. J. E Millstone, S. Park, K. L. Shuford, L. D. Qin, G. C. Schatz, C. A. Mirkin, J. Am. Chem. Soc., 2005, 127, 5312.

    Article  CAS  Google Scholar 

  10. L. Sun, Z. Yu, M. Lin, Analyst, 2019, 144, 4820.

    Article  CAS  Google Scholar 

  11. S. Barbosa, A. Agrawal, L. R. Rodríguez-Lorenzo, H. Weller, L. M. Liz-Marzán, Langmuir, 2010, 26, 14943.

    Article  CAS  Google Scholar 

  12. L. Rodriguez Lorenzo, R. A. Alvarez-Puebla, J. G. De Abajo, L. M. Liz-Marzán, J. Phys. Chem. C, 2010, 114, 7336.

    Article  CAS  Google Scholar 

  13. M. Moskovits, J. Raman Spectroscopy, 2005, 36, 485.

    Article  CAS  Google Scholar 

  14. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, Chem. Inform., 2003, No. 34, 668.

    Google Scholar 

  15. S. Y. Ding, J. Yi, Z. Q. Tian, Nat. Rev. Mater., 2016, 1, 16021.

    Article  CAS  Google Scholar 

  16. M. D. Sonntag, D. Chulhai, T. Seideman, L. Jensen, R. P. Van Duyne, J. Am. Chem. Soc., 2013, 135, 17187.

    Article  CAS  Google Scholar 

  17. M. Moskovits, J. S. Suh, Chem. Inform., 1986, No. 107, 95.

    Google Scholar 

  18. D. Senapati, A. K. Singh, P. Ray, Chem. Phys. Lett., 2010, 87, 88.

    Article  Google Scholar 

  19. W. Xi, A. J. Haes, J. Am. Chem. Soc., 2019, 141, 4034.

    Article  CAS  Google Scholar 

  20. G. P. Sahoo, H. Bar, D. K. Bhui, P. Sarkar, S. Samanta, S. Pyne, S. Ash, A. Misra, Colloid. Surface, A, 2011, 375, No. 1–3, 30.

    Article  CAS  Google Scholar 

  21. C. Wang, T. Wang, Z. Ma, Z. G. Su, Nanotechnology, 2005, 16, 2555.

    Article  CAS  Google Scholar 

  22. M. Yamamoto, Y. Kashiwagi, T. Sakata, H. Mori, M. Nakamoto, Chem. Mater., 2005, 17, 5391.

    Article  CAS  Google Scholar 

  23. C. L. Nehl, H. Liao, J. H. Hafner, Nano Lett., 2006, 6, 683.

    Article  CAS  Google Scholar 

  24. H. Y. Wu, M. Liu, M. H. Huang, J. Phys. Chem. B, 2006, 110, 19291.

    Article  CAS  Google Scholar 

  25. M. Grzelczak, L. M. Liz-Marzán, Chem. Soc. Rev., 2008, 37, 1783.

    Article  CAS  Google Scholar 

  26. X. Z. Qiao, Z. J. Xue, L. Liu, K. Y. Liu, T. Wang, Adv. Mater., 2019, 31, 1804275.

    Article  Google Scholar 

  27. G. C. Phan-Quan, X. Y. Ling, ACS Nano, 2019, 13, 12090.

    Article  Google Scholar 

  28. T. Yaseen, H. Pu, D. Sun, Food. Anal. Method., 2019, 12, 2094.

    Article  Google Scholar 

  29. A. A. Fallah, A. Barani, Food Control., 2010, 40, 100.

    Article  Google Scholar 

  30. Q. Cui, G. Shen, M. Bargheer, ACS Appl. Mater. Inter., 2014, 6, 17075.

    Article  CAS  Google Scholar 

  31. Y. Wang, H. Chen, E. Wang, J. Chem. Phys., 2006, 124, 074709.

    Article  Google Scholar 

  32. M. Osawa, N. Matsuda, I. Uchida, J. Phys. Chem., 1994, 98, 1270.

    Article  Google Scholar 

  33. V. A. Narayanan, G. M. Begun, T. Vo-Dinh, J. Raman Spectroscopy, 1992, 23, 281.

    Article  CAS  Google Scholar 

  34. B. Saute, R. Premasiri, R. Narayanan, Analyst, 2012, 137, 5082.

    Article  CAS  Google Scholar 

  35. S. Sanchez-Cortes, J. Garcia-Ramos, Vib. Spectrosc., 1998, 17, 133.

    Article  CAS  Google Scholar 

  36. EPA, 2006, Pesticides-reregistration eligibility decision for thiram|US EPA archive document. US; https://archive.epa.gov/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruoping Li or Mingju Huang.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 812–818, April, 2022.

This work was performed under financial support of the National Natural Science Foundation of China (61805069 and U1904193) and within the framework of the Science and Technology Development Project of Henan Province (182102210029).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Wang, L., Liu, G. et al. Synthesis of multi-spiny gold nanoparticles of controlled shape and their use as a SERS substrate for the detection of pesticide residues. Russ Chem Bull 71, 812–818 (2022). https://doi.org/10.1007/s11172-022-3482-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3482-6

Key words

Navigation