Skip to main content
Log in

Aluminum complexes based on 1,10-phenanthroline-containing diols: synthesis and application as initiators of polymerization of ε-caprolactone

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reaction of the O,N,N,O-type ligands, namely, 4,7-bis(4-R-phenyloxy)-2,9-(HOCR′2-CH2)2-1,10-phenanthrolines, LH2 (R = But (1–4), Me (5–8), R′ = Ph (1), R′R′ = -(CH2)5-(2, 5), R′ = Me (3, 6), CR′2 = adamantane-2,2-diyl (4, 7)), with an equimolar amount of trimethylaluminum afforded the corresponding aluminum complexes 8–14, which were characterized by NMR spectroscopy (1H, 13C) and elemental analysis. The NMR spectroscopy data showed that the coordination number of the aluminum atom in 8–14 is equal to five due to the formation of two intramolecular Al-N bonds. Complexes 8 and 12–14 were tested as initiators for the polymerization of ε-caprolactone in the presence of a co-initiator (benzyl alcohol). Complex 8 (R = But, R′ = Ph) demonstrated the highest activity, leading to the polymer with a high molecular weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Shimpi, Biodegradable and biocompatible polymer composites: Processing, properties and applications, Woodhead Publishing, 2017.

  2. M. A. Elsawy, K.-H. Kim, J.-W. Park, A. Deep, Renew. Sustain. Energy Rev., 2017, 79, 1346; DOI: https://doi.org/10.1016/j.rser.2017.05.143.

    Article  CAS  Google Scholar 

  3. V. P. Kashparova, D. V. Chernysheva, V. A. Klushin, V. E. Andreeva, O. A. Kravchenko, N. V. Smirnova, Russ. Chem. Rev., 2021, 90, 750; DOI: https://doi.org/10.1070/RCR5018.

    Article  Google Scholar 

  4. Y. Sarazin, J.-F. Carpentier, Chem. Rev., 2015, 115, 3564; DOI: https://doi.org/10.1021/acs.chemrev.5b00033.

    Article  CAS  Google Scholar 

  5. O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev., 2004, 104, 6147; DOI: https://doi.org/10.1021/cr040002s.

    Article  CAS  Google Scholar 

  6. P. Degée, P. Dubois, R. Jérŏme, S. Jacobsen, H.-G. Fritz, Macromol. Symp., 1999, 144, 289; DOI: https://doi.org/10.1002/masy.19991440126.

    Article  Google Scholar 

  7. Y. Nakayama, K. Aihara, Z. Cai, T. Shiono, C. Tsutsumi, Int. J. Mol. Sci., 2017, 18, 1312; DOI: https://doi.org/10.3390/ijms18061312.

    Article  Google Scholar 

  8. I. E. Nifant’ev, A. V Shlyakhtin, V. V Bagrov, R. N. Ezhov, B. A. Lozhkin, A. V Churakov, P. V Ivchenko, Mendeleev Commun., 2018, 28, 629; DOI: https://doi.org/10.1016/j.mencom.2018.11.022.

    Article  Google Scholar 

  9. B. A. Lozhkin, A. V. Shlyakhtin, V. V. Bagrov, P. V. Ivchenko, I. E. Nifant’ev, Mendeleev Commun., 2018, 28, 61; DOI: https://doi.org/10.1016/j.mencom.2018.01.020.

    Article  CAS  Google Scholar 

  10. A. O. Tolpygin, O. A. Linnikova, T. A. Kovylina, A. V. Cherkasov, G. K. Fukin, A. A. Trifonov, Russ. Chem. Bull., 2020, 69, 1114; DOI: https://doi.org/10.1007/s11172-020-2876-6.

    Article  CAS  Google Scholar 

  11. I. E. Nifant’ev, M. A. Kosarev, A. V. Shlyakhtin, A. N. Tavtorkin, M. E. Minyaev, P. V. Ivchenko, Mendeleev Commun., 2020, 30, 46; DOI: https://doi.org/10.1016/j.mencom.2020.01.015.

    Article  Google Scholar 

  12. M. Strianese, D. Pappalardo, M. Mazzeo, M. Lamberti, C. Pellecchia, Dalton Trans., 2020, 49, 16533; DOI: https://doi.org/10.1039/d0dt02639e.

    Article  CAS  Google Scholar 

  13. J. Gao, D. Zhu, W. Zhang, G. A. Solan, Y. Ma, W. H. Sun, Inorg. Chem. Front., 2019, 6, 2619; DOI: https://doi.org/10.1039/c9qi00855a.

    Article  CAS  Google Scholar 

  14. O. Santoro, X. Zhang, C. Redshaw, Catalysts, 2020, 10, 800; DOI: https://doi.org/10.3390/catal10070800.

    Article  CAS  Google Scholar 

  15. B. H. Huang, C. Y. Tsai, C. T. Chen, B. T. Ko, Dalton Trans., 2016, 45, 17557; DOI: https://doi.org/10.1039/c6dt03384a.

    Article  CAS  Google Scholar 

  16. Y. Wei, S. Wang, S. Zhou, Dalton Trans., 2016, 45, 4471; DOI: https://doi.org/10.1039/c5dt04240b.

    Article  CAS  Google Scholar 

  17. H. Pei, H. Yang, N. Lu, W. Liu, Y. Li, Z. Anorg. Allg. Chem., 2017, 643, 511; DOI: https://doi.org/10.1002/zaac.201600464.

    Article  CAS  Google Scholar 

  18. E. Stirling, Y. Champouret, M. Visseaux, Polym. Chem., 2018, 9, 2517; DOI: https://doi.org/10.1039/c8py00310f.

    Article  CAS  Google Scholar 

  19. B. Gao, D. Li, Y. Li, Q. Duan, R. Duan, X. Pang, New J. Chem., 2015, 39, 4670; DOI: https://doi.org/10.1039/c5nj00469a.

    Article  CAS  Google Scholar 

  20. M. D. Jones, L. Brady, P. McKeown, A. Buchard, P. M. Schäfer, L. H. Thomas, M. F. Mahon, T. J. Woodman, J. P. Lowe, Chem. Sci., 2015, 6, 5034; DOI: https://doi.org/10.1039/c5sc01819f.

    Article  CAS  Google Scholar 

  21. A. Pilone, N. De Maio, K. Press, V. Venditto, D. Pappalardo, M. Mazzeo, C. Pellecchia, M. Kol, M. Lamberti, Dalton Trans., 2015, 44, 2157; DOI: https://doi.org/10.1039/c4dt02616k.

    Article  CAS  Google Scholar 

  22. J. P. MacDonald, M. Sidera, S. P. Fletcher, M. P. Shaver, Eur. Polym. J., 2016, 74, 287; DOI: https://doi.org/10.1016/j.eurpolymj.2015.11.032.

    Article  CAS  Google Scholar 

  23. Y. Zhang, X. Pang, L. Ma, Z. Tang, J. Chil. Chem. Soc., 2017, 62, 3468; DOI: https://doi.org/10.4067/S0717-97072017000200009.

    Article  Google Scholar 

  24. M. C. D’Alterio, C. De Rosa, G. Talarico, ACS Catal., 2020, 10, 2221; DOI: https://doi.org/10.1021/acscatal.9b05109.

    Article  Google Scholar 

  25. B. N. Mankaev, K. V. Zaitsev, V. S. Timashova, G. S. Zaitseva, M. P. Egorov, S. S. Karlov, Russ. Chem. Bull., 2018, 67, 542; DOI: https://doi.org/10.1007/s11172-018-2108-5.

    Article  CAS  Google Scholar 

  26. B. N. Mankaev, K. V. Zaitsev, G. S. Zaitseva, A. V. Churakov, M. P. Egorov, S. S. Karlov, Russ. Chem. Bull., 2019, 68, 380; DOI: https://doi.org/10.1007/s11172-019-2396-4.

    Article  CAS  Google Scholar 

  27. B. N. Mankaev, M. U. Agaeva, B. N. Tarasevich, I. P. Gloriozov, M. P. Egorov, S. S. Karlov, Russ. Chem. Bull., 2022, 71, 330.

    Article  Google Scholar 

  28. Y. A. Piskun, I. V. Vasilenko, S. V. Kostjuk, K. V. Zaitsev, G. S. Zaitseva, S. S. Karlov, J. Polym. Sci. Part A, Polym. Chem., 2010, 48, 1230; DOI: https://doi.org/10.1002/pola.23886.

    Article  CAS  Google Scholar 

  29. K. V. Zaitsev, Y. A. Piskun, Y. F. Oprunenko, S. S. Karlov, G. S. Zaitseva, I. V Vasilenko, A. V. Churakov, S. V. Kostjuk, J. Polym. Sci. Part A, Polym. Chem., 2014, 52, 1237; DOI: https://doi.org/10.1002/pola.27110.

    Article  CAS  Google Scholar 

  30. K. V. Zaitsev, E. A. Kuchuk, B. N. Mankaev, A. V. Churakov, G. S. Zaitseva, D. A. Lemenovskii, S. S. Karlov, Russ. Chem. Bull., 2014, 63, 2630; DOI: https://doi.org/10.1007/s11172-014-0790-5.

    Article  CAS  Google Scholar 

  31. Y. A. Piskun, I. V. Vasilenko, K. V. Zaitsev, S. S. Karlov, G. S. Zaitseva, L. V. Gaponik, S. V. Kostjuk, Russ. Chem. Bull., 2015, 64, 181; DOI: https://doi.org/10.1007/s11172-015-0840-7.

    Article  CAS  Google Scholar 

  32. M. M. Kireenko, E. A. Kuchuk, K. V. Zaitsev, V. A. Tafeenko, Y. F. Oprunenko, A. V. Churakov, E. K. Lermontova, G. S. Zaitseva, S. S. Karlov, Dalton Trans., 2015, 44, 11963; DOI: https://doi.org/10.1039/c5dt01001b.

    Article  CAS  Google Scholar 

  33. E. A. Kuchuk, K. V. Zaitsev, F. A. Mamedova, A. V. Churakov, G. S. Zaitseva, D. A. Lemenovsky, S. S. Karlov, Russ. Chem. Bull., 2016, 65, 1743; DOI: https://doi.org/10.1007/s11172-016-1505-x.

    Article  CAS  Google Scholar 

  34. B. N. Mankaev, K. V. Zaitsev, E. A. Kuchuk, M. V. Vershinina, G. S. Zaitseva, M. P. Egorov, S. S. Karlov, Russ. Chem. Bull., 2019, 68, 389; DOI: https://doi.org/10.1007/s11172-019-2397-3.

    Article  CAS  Google Scholar 

  35. S. S. Karlov, G. S. Zaitseva, M. P. Egorov, Russ. Chem. Bull., 2019, 68, 1129; DOI: https://doi.org/10.1007/s11172-019-2532-1.

    Article  CAS  Google Scholar 

  36. E. A. Kuchuk, B. N. Mankaev, V. A. Serova, K. V. Zaitsev, A. V. Churakov, Y. F. Oprunenko, G. S. Zaitseva, S. S. Karlov, Mendeleev Commun., 2020, 30, 596; DOI: https://doi.org/10.1016/j.mencom.2020.09.014.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Karlov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 712–716, April, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mankaev, B.N., Agaeva, M.U., Egorov, M.P. et al. Aluminum complexes based on 1,10-phenanthroline-containing diols: synthesis and application as initiators of polymerization of ε-caprolactone. Russ Chem Bull 71, 712–716 (2022). https://doi.org/10.1007/s11172-022-3470-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3470-x

Key words

Navigation