Skip to main content
Log in

Pyrolytic synthesis of nitrogen and silicon doped graphene nanoflakes

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Heterosubstitution in graphene materials is a powerful tool for targeted variation of their structural and electronic characteristics. In this work, the template pyrolytic approach combined with the simultaneous doping with nitrogen and silicon atoms was used for the first time to synthesize graphene nanoflakes. It was found that materials co-doped with nitrogen and silicon can be obtained by sequential introduction of silicon and nitrogen, while simultaneous doping resulted in the incorporation of only nitrogen atoms into the structure of the graphene layers, with silicon atoms binding with oxygen. According to transmission electron microscopy, the resulting particles have a different structure depending on the synthesis method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. H. Acauan, A. L. Kaiser, B. L. Wardle, Carbon, 2021, 177, 1–10; DOI: https://doi.org/10.1016/j.carbon.2021.02.045.

    Article  CAS  Google Scholar 

  2. A. SI, G. Z. Kyzas, K. Pal, F. G. de Souza, J. Mol. Struct., 2021, 1239, 130518; DOI: https://doi.org/10.1016/j.molstruc.2021.130518.

    Article  CAS  Google Scholar 

  3. L. A. Chernozatonskii, P. B. Sorokin, A. A. Artukh, Russ. Chem. Rev., 2014, 83, 251–279; DOI: https://doi.org/10.1070/RC2014v083n03ABEH004367.

    Article  Google Scholar 

  4. V. B. Mohan, K. Lau, D. Hui, D. Bhattacharyya, Compos. Part B Eng., 2018, 142, 200–220; DOI: https://doi.org/10.1016/j.compositesb.2018.01.013.

    Article  CAS  Google Scholar 

  5. V. V. Vysotsky, A. S. Dmitriev, I. A. Mikhailova, K. F. Chernyshova, O. V. Souvorova, A. A. Revina, Russ. Chem. Bull., 2020, 69, 32–42; DOI: https://doi.org/10.1007/s11172-020-2720-z.

    Article  CAS  Google Scholar 

  6. S. A. Chernyak, A. M. Podgornova, E. A. Arkhipova, R. O. Novotortsev, T. B. Egorova, A. S. Ivanov, K. I. Maslakov, S. V. Savilov, V. V. Lunin, Appl. Surf. Sci., 2018, 439, 371–373; DOI: https://doi.org/10.1016/j.apsusc.2018.01.059.

    Article  CAS  Google Scholar 

  7. M. S. Islam, S. N. Faisal, L. Tong, A. K. Roy, J. Zhang, E. Haque, A. I. Minett, C. H. Wang, J. Energy Storage, 2021, 37, 102453; DOI: https://doi.org/10.1016/j.est.2021.102453.

    Article  Google Scholar 

  8. S. Sarkar, R. Roy, B. K. Das, K. K. Chattopadhyay, Carbon, 2021, 184, 253–265; DOI: https://doi.org/10.1016/j.carbon.2021.08.017.

    Article  CAS  Google Scholar 

  9. P. Li, K. Xu, Y. Zhou, Y. Chen, W. Zhang, Z. Wang, X. Li, J. Alloys Compd., 2021, 860, 158462; DOI: https://doi.org/10.1016/j.jallcom.2020.158462.

    Article  CAS  Google Scholar 

  10. F. López-Urías, A. D. Martínez-Iniesta, A. Morelos-Gómez, E. Muñoz-Sandoval, Mater. Chem. Phys., 2021, 265, 124450; DOI: https://doi.org/10.1016/j.matchemphys.2021.124450.

    Article  Google Scholar 

  11. D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W. Li, Q. Fu, X. Ma, Q. Xue, G. Sun, X. Bao, Chem. Mater., 2011, 23, 1188–1193; DOI: https://doi.org/10.1021/cm102666r.

    Article  CAS  Google Scholar 

  12. W. Raza, K. Ahmad, H. Kim, J. Phys. Chem. Solids, 2021, 160, 110359; DOI: https://doi.org/10.1016/j.jpcs.2021.110359.

    Article  Google Scholar 

  13. Z. Wang, Y. Chen, P. Li, J. He, W. Zhang, Z. Guo, Y. Li, M. Dong, RSC Adv., 2016, 6, 15080–15086; DOI: https://doi.org/10.1039/C5RA25962B.

    Article  CAS  Google Scholar 

  14. J. Campos-Delgado, I. O. Maciel, D. A. Cullen, D. J. Smith, A. Jorio, M. A. Pimenta, H. Terrones, M. Terrones, ACS Nano, 2010, 4, 1696–1702; DOI: https://doi.org/10.1021/nn901599g.

    Article  CAS  Google Scholar 

  15. S. B. Fagan, R. Mota, R. J. Baierle, A. J. R. da Silva, A. Fazzio, Mater. Charact., 2003, 50, 183–187; DOI: https://doi.org/10.1016/S1044-5803(03)00087-1.

    Article  CAS  Google Scholar 

  16. S. A. Chernyak, D. N. Stolbov, K. I. Maslakov, S. V. Maksimov, O. Ya. Isaikina, S. V. Savilov, Russ. J. Phys. Chem., 2021, 95, 558–564; DOI: https://doi.org/10.1134/S0036024421030109.

    Article  CAS  Google Scholar 

  17. P. Zhang, X. Hou, J. Mi, Y. He, L. Lin, Q. Jiang, M. Dong, Phys. Chem. Chem. Phys., 2014, 16, 17479–17486; DOI: https://doi.org/10.1039/C4CP02167C.

    Article  CAS  Google Scholar 

  18. X. Fu, Q. D. Wang, Z. Liu, F. Peng, Mater. Lett., 2015, 158, 32–35; DOI: https://doi.org/10.1016/j.matlet.2015.05.141.

    Article  CAS  Google Scholar 

  19. C. Chen, X. Sun, X. Yan, Y. Wu, H. Liu, Q. Zhu, B. Bediako, B. Han, Angew. Chem., 2020, 132, 11216–11222; DOI: https://doi.org/10.1002/ange.202004226.

    Article  Google Scholar 

  20. Y. Qiao, J. Wu, J. Zhao, Q. Li, P. Zhang, C. Hao, X. Liu, S. Yang, Y. Liu, Energy Storage Mater., 2020, 27, 133–139; DOI: https://doi.org/10.1016/j.ensm.2020.01.021.

    Article  Google Scholar 

  21. N. Kuganathan, S. Anurakavan, P. Abiman, P. Iyngaran, E. I. Gkanas, A. Chroneos, Phys. B Condens. Matter., 2021, 600, 412639; DOI: https://doi.org/10.1016/j.physb.2020.412639.

    Article  CAS  Google Scholar 

  22. Y. Weng, A. Y. Nobakht, S. Shin, K. D. Kihm, D. S. Aaron, Int. J. Heat Mass Transf., 2021, 169, 120979; DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2021.120979.

    Article  CAS  Google Scholar 

  23. I. Antoniazzi, T. Chagas, M. Matos, L. Marçal, E. A. Soares, M. Mazzoni, R. H. Miwa, J. Lopes, A. Malachias, R. Magalhães-Paniago, M. H. Oliveira, Carbon., 2020, 167, 746–759; DOI: https://doi.org/10.1016/j.carbon.2020.05.064.

    Article  CAS  Google Scholar 

  24. H. Guo, S. Jou, T. Mao, B. Huang, Y. Huang, H. Yu, Y. Hsieh, C. Chen, Appl. Surf. Sci., 2019, 464, 125–130; DOI: https://doi.org/10.1016/j.apsusc.2018.09.067.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Chernyak or S. V. Savilov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences R. Z. Sagdeev on the occasion of his 80th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 680–685, April, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolbov, D.N., Chernyak, S.A., Maslakov, K.I. et al. Pyrolytic synthesis of nitrogen and silicon doped graphene nanoflakes. Russ Chem Bull 71, 680–685 (2022). https://doi.org/10.1007/s11172-022-3465-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3465-7

Key words

Navigation