Skip to main content
Log in

Heteroligand complexes of chromium, manganese, and iron with trans-dibenzoporphyrazine and two oxo ligands: DFT calculations

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The possibility of formation of heteroligand (6,6,6,6)-macrotetracyclic chelate complexes of 3d-elements (M = Cr, Mn, Fe) with trans-dibenzoporphyrazine as the (N,N,N,N)-donor ligand and two O2 anions was studied in terms of the density functional theory. The OPBE/TZVP method predicts complexation only in the systems with M = Cr, Fe. According to B3PW91/TZVP calculations, all the 3d-elements studied can form complexes with the structure of a slightly distorted octahedron and planar chelate site MN4. All six-membered metal chelate rings in the complexes are identical to one another. The key bond lengths, bond angles, and non-bond angles in the complexes were determined and the corresponding standard enthalpies, entropies, and Gibbs energies of formation were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kasuda, M. Tsutsui, Coord. Chem. Rev., 1980, 32, 67; DOI: https://doi.org/10.1016/S0010-8545(00)80370-7.

    Article  Google Scholar 

  2. W. Sliva, B. Mianovska, Transit. Met. Chem., 2000, 25, 491; DOI: https://doi.org/10.1023/A:1007054025169.

    Article  Google Scholar 

  3. G. M. Mamardashvili, N. Z. Mamardashvili, O. I. Koifman, Russ. Chem. Rev., 2008, 77, 59; DOI: https://doi.org/10.1070/RC2008v077n01ABEH003743.

    Article  CAS  Google Scholar 

  4. A. L. Thomas, Phthalocyanines. Research & Applications, CRC Press, Boston, 1990.

    Google Scholar 

  5. T. N. Lomova, Aksial’no koordinirovannye metalloporfiriny v nauke i praktike [Axially Coordinate Metalloporphyrins in Sicence and Practice], URSS-KRASAND, Moscow, 2018, 700 pp. (in Russian).

    Google Scholar 

  6. O. V. Mikhailov, D. V. Chachkov, Russ. Chem. Bull., 2020, 69, 893; DOI: https://doi.org/10.1007/s11172-020-2846-z.

    Article  CAS  Google Scholar 

  7. O. V. Mikhailov, D. V. Chachkov, Int. J. Mol. Sci., 2020, 21, Article 9085; DOI: https://doi.org/10.3390/ijms21239085.

  8. A. Schaefer, H. Horn, R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571; DOI: https://doi.org/10.1063/1.463096.

    Article  CAS  Google Scholar 

  9. A. Schaefer, C. Huber, R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829; DOI: https://doi.org/10.1063/1.467146.

    Article  CAS  Google Scholar 

  10. A. D. Becke, Phys. Rev. A, 1988, 38, 3098; DOI: https://doi.org/10.1103/PhysRevA.38.3098.

    Article  CAS  Google Scholar 

  11. J. P. Perdew, K. Burke, Y. Wang, Phys. Rev. B, 1996, 54, 16533; DOI: https://doi.org/10.1103/PhysRevB.54.16533.

    Article  CAS  Google Scholar 

  12. M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, K. A. Lyssenko, Science, 2017, 355, 49; DOI: https://doi.org/10.1126/science.aah5975.

    Article  CAS  Google Scholar 

  13. O. V. Mikhailov, D. V. Chachkov, J. Porphyr. Phthalocyanines, 2019, 23, 685; DOI: https://doi.org/10.1142/S1088424619500470.

    Article  CAS  Google Scholar 

  14. O. V. Mikhailov, D. V. Chachkov, Inorg. Chem. Commun., 2019, 106, 224; DOI: https://doi.org/10.1016/j.inoche.2019.05.025.

    Article  CAS  Google Scholar 

  15. D. V. Chachkov, O. V. Mikhailov, Russ. J. Inorg. Chem., 2013, 58, 174; DOI: https://doi.org/10.1134/S0036023613020186.

    Article  Google Scholar 

  16. D. V. Chachkov, O. V. Mikhailov, Russ. J. Inorg. Chem., 2015, 60, 1117; DOI: https://doi.org/10.1134/S0036023615090065.

    Article  CAS  Google Scholar 

  17. O. V. Mikhailov, D. V. Chachkov, Russ. J. Inorg. Chem., 2015, 60, 1354; DOI: https://doi.org/10.1134/S003602361511011X.

    Article  CAS  Google Scholar 

  18. D. V. Chachkov, O. V. Mikhailov, Russ. Chem. Bull., 2021, 70, 276; DOI: https://doi.org/10.1007/s11172-021-3082-x.

    Article  CAS  Google Scholar 

  19. W.-M. Hoe, A. Cohen, N. C. Handy, Chem. Phys. Lett., 2001, 341, 319; DOI: https://doi.org/10.1016/S0009-2614(01)00581-4.

    Article  CAS  Google Scholar 

  20. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865; DOI: https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  21. H. Paulsen, L. Duelund, H. Winkler, H. Toftlund, A. X. Trautwein, Inorg. Chem., 2001, 40, 2201; DOI: https://doi.org/10.1021/ic000954q.

    Article  CAS  Google Scholar 

  22. M. Swart, A. R. Groenhof, A. W. Ehlers, K. Lammertsma, J. Phys. Chem. A., 2004, 108, 5479; DOI: https://doi.org/10.1021/jp049043i.

    Article  CAS  Google Scholar 

  23. M. Swart, A. W. Ehlers, K. Lammertsma, Mol. Phys., 2004, 102, 2467; DOI: https://doi.org/10.1080/0026897042000275017.

    Article  CAS  Google Scholar 

  24. M. Swart, Inorg. Chim. Acta, 2007, 360, 179; DOI: https://doi.org/10.1016/j.ica.2006.07.073.

    Article  CAS  Google Scholar 

  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  26. J. W. Ochterski, Thermochemistry in Gaussian, Gaussian, Inc., Wallingford CT, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Mikhailov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 656–664, April, 2022.

The contribution made by D. V. Chachkov was financially supported within the framework of the State Assignment to the Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences”.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chachkov, D.V., Mikhailov, O.V. Heteroligand complexes of chromium, manganese, and iron with trans-dibenzoporphyrazine and two oxo ligands: DFT calculations. Russ Chem Bull 71, 656–664 (2022). https://doi.org/10.1007/s11172-022-3462-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3462-x

Key words

Navigation