Skip to main content
Log in

Cyclopropenes and methylenecyclopropanes in 1,3-dipolar cycloaddition reactions

  • Review
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The review considers the main results of the cycloaddition reactions involving cyclopropenes and methylenecyclopropanes, the compounds bearing strained three-membered rings and, respectively, endo- and exocyclic double bonds. The main attention is focused on the reactions of these compounds with 1,3-dipoles (nitrones, azomethine imines, azomethine ylides, carbonyl ylides, etc.), which gave complex heterocyclic systems with high regio- and stereoselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. de Meijere, S. I. Kozhushkov, H. Schill, Chem. Rev., 2006, 106, 4926; DOI: https://doi.org/10.1021/cr0505369.

    Article  CAS  PubMed  Google Scholar 

  2. O. G. Kulinkovich, Cyclopropanes in Organic Synthesis, Wiley, Hoboken, 2015.

    Book  Google Scholar 

  3. P. Keglevich, A. Keglevich, L. Hazai, G. Kalaus, C. Szàntay, Curr. Org. Chem., 2014, 18, 2037; DOI: https://doi.org/10.2174/1385272819666140721190257.

    Article  CAS  Google Scholar 

  4. C. Lamberth, Tetrahedron, 2019, 75, 4365; DOI: https://doi.org/10.1016/j.tet.2019.06.043.

    Article  CAS  Google Scholar 

  5. T. T. Talele, J. Med. Chem., 2016, 59, 8712; DOI: https://doi.org/10.1021/acs.jmedchem.6b00472.

    Article  CAS  PubMed  Google Scholar 

  6. C. Ebner, E. M. Carreira, Chem. Rev., 2017, 117, 11651; DOI: https://doi.org/10.1021/acs.chemrev.6b00798.

    Article  CAS  PubMed  Google Scholar 

  7. Z. Casar, Synthesis, 2020, 52, 1315; DOI: https://doi.org/10.1055/s-0039-1690058.

    Article  CAS  Google Scholar 

  8. V. D. Gvozdev, K. N. Shavrin, M. P. Egorov, O. M. Nefedov, Russ. Chem. Bull., 2021, 70, 2025; DOI: https://doi.org/10.1007/s11172-021-3318-9.

    Google Scholar 

  9. T. F. Schneider, J. Kaschel, D. B. Werz, Angew. Chem., Int. Ed., 2014, 53, 5504; DOI: https://doi.org/10.1002/anie.201309886.

    Article  CAS  Google Scholar 

  10. A. A. Tabolin, S. L. Ioffe, Isr. J. Chem., 2016, 56, 385; DOI: https://doi.org/10.1002/ijch.201500082.

    Article  CAS  Google Scholar 

  11. I. V. Trushkov, Isr. J. Chem., 2016, 56, 369; DOI: https://doi.org/10.1002/ich.201500069.

    Article  CAS  Google Scholar 

  12. M. A. Cavitt, L. H. Phun, S. France, Chem. Soc. Rev., 2014, 43, 804; DOI: https://doi.org/10.1039/c3cs60238a.

    Article  CAS  PubMed  Google Scholar 

  13. H. K. Grover, M. R. Emmett, M. A. Kerr, Org. Biomol. Chem., 2015, 13, 656; DOI: https://doi.org/10.1039/c4ob02117g.

    Article  CAS  Google Scholar 

  14. Yu. V. Tomilov, L. G. Menchikov, R. A. Novikov, O. A. Ivanova, I. V. Trushkov, Russ. Chem. Rev., 2018, 87, 201; DOI: https://doi.org/10.1070/RCR4787.

    Article  CAS  Google Scholar 

  15. L. G. Menchikov, R. A. Novilov, Yu. B. Tomilov, Donornoaktseptornye cyklopropany. Sintez i reaktsii dimerizatsii [Donor-Acceptor Cyclopropanes. Synthesis and dimerization Reactions], ZIOC RAS, Moscow, 2016, 162 pp. (in Russian).

    Google Scholar 

  16. P. von R. Schleyer, J. E. Williams, K. R. Blanchard, J. Am. Chem. Soc., 1970, 92, 2377; DOI: https://doi.org/10.1021/ja00711a030.

    Article  Google Scholar 

  17. I. A. D’yakonov, M. I. Komendantov, Vestn. Leningradskogo un-ta [Bull. Leningrad Univ.], 1956, 22, 122. (in Russian).

    Google Scholar 

  18. M. Rubin, M. Rubina, V. Gevorgyan, Synthesis, 2006, 1221; DOI: https://doi.org/10.1055/s-2006-926404.

  19. Z.-B. Zhu, Y. Wei, M. Shi, Chem. Soc. Rev., 2011, 40, 5534; DOI: https://doi.org/10.1039/c1cs15074j.

    Article  CAS  PubMed  Google Scholar 

  20. V. Rubén, Synthesis, 2016, 48, 2343; DOI: https://doi.org/10.1055/s-0035-1561644.

    Article  CAS  Google Scholar 

  21. M. Rubin, M. Rubina, V. Gevorgyan, Chem. Rev., 2007, 107, 3117; DOI: https://doi.org/10.1021/cr050988l.

    Article  CAS  PubMed  Google Scholar 

  22. R. Vicente, Chem. Rev., 2021, 121, 162; DOI: https://doi.org/10.1021/acs.chemrev.0c00151.

    Article  CAS  PubMed  Google Scholar 

  23. M. L. Deem, Synthesis, 1972, 675; DOI: https://doi.org/10.1055/s-1972-21968.

  24. L. M. Harwood, R. J. Vickers, in The Chemistry of Heterocyclic Compounds. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products, Eds A. Padwa, W. H. Pearson, John Wiley & Sons, New York, 2002, Vol. 59, p. 169.

  25. J. W. Lown, T. W. Maloney, G. Dallas, Can. J. Chem., 1970, 48, 584; DOI: https://doi.org/10.1139/v70-096.

    Article  CAS  Google Scholar 

  26. K. Matsumoto, Y. Ikemi, M. Toda, T. Uchida, J. W. Lown, Tetrahedron Lett., 1995, 36, 3011; DOI: https://doi.org/10.1016/0040-4039(95)00436-G.

    Article  CAS  Google Scholar 

  27. T. Uchida, J. Chem. Soc., Perkin Trans. 1, 1978, 1315; DOI: https://doi.org/10.1039/P19780001315.

  28. A. S. Filatov, N. A. Knyazev, A. P. Molchanov, T. L. Panikorovsky, R. R. Kostikov, A. G. Larina, V. M. Boitsov, A. V. Stepakov, J. Org. Chem., 2017, 82, 959; DOI: https://doi.org/10.1021/acs.joc.6b02505.

    Article  CAS  PubMed  Google Scholar 

  29. A. S. Filatov, N. A. Knyazev, M. N. Ryazantsev, V. V. Suslonov, A. G. Larina, A. P. Molchanov, R. R. Kostikov, V. M. Boitsov, A. V. Stepakov, Org. Chem. Front., 2018, 5, 595; DOI: https://doi.org/10.1039/c7qo00888k.

    Article  CAS  Google Scholar 

  30. A. S. Filatov, N. A. Knyazev, S. V. Shmakov, A. A. Bogdanov, M. N. Ryazantsev, A. A. Shtyrov, G. L. Starova, A. P. Molchanov, A. G. Larina, V. M. Boitsov, A. V. Stepakov, Synthesis, 2019, 51, 713; DOI: https://doi.org/10.1055/s-0037-1611059.

    Article  CAS  Google Scholar 

  31. A. S. Filatov, S. Wang, O. V. Khoroshilova, S. V. Lozovskiy, A. G. Larina, V. M. Boitsov, A. V. Stepakov, J. Org. Chem., 2019, 84, 7017; DOI: https://doi.org/10.1021/acs.joc.9b00753.

    Article  CAS  PubMed  Google Scholar 

  32. S. Wang, A. S. Filatov, S. V. Lozovskiy, S. V. Shmakov, O. V. Khoroshilova, A. G. Larina, S. I. Selivanov, V. M. Boitsov, A. V. Stepakov, Synthesis, 2021, 53, 2114; DOI: https://doi.org/10.1055/a-1360-9716.

    Article  CAS  Google Scholar 

  33. H. Deng, W.-L. Yang, F. Tian, W. Tang, W.-P. Deng, Org. Lett., 2018, 20, 4121; DOI: https://doi.org/10.1021/acs.orglett.8b01686.

    Article  CAS  PubMed  Google Scholar 

  34. Y. Yuan, Zh.-J. Zheng, F. Ye, J.-H. Ma, Zh. Xu, X.-F. Bai, L. Li, L.-W. Xu, Org. Chem. Front., 2018, 5, 2759; DOI: https://doi.org/10.1039/c8qo00761f.

    Article  CAS  Google Scholar 

  35. X. Xu, P. Y. Zavalij, M. P. Doyle, J. Am. Chem. Soc., 2013, 135, 12439; DOI: https://doi.org/10.1021/ja406482q.

    Article  CAS  PubMed  Google Scholar 

  36. R. C. F. Jones, J. N. Martin, in The Chemistry of Heterocyclic Compounds. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, Eds A. Padwa, W. H. Pearson, John Wiley & Sons, New York, 2002, Vol. 59, pp. 1–81.

  37. S.-I. Murahashi, Y. Imada, Chem. Rev., 2019, 119, 4684; DOI: https://doi.org/10.1021/acs.chemrev.8b00476.

    Article  CAS  PubMed  Google Scholar 

  38. J. Marco-Contelles, J. Med. Chem., 2020, 63, 13413; DOI: https://doi.org/10.1021/acs.jmedchem.0c00976.

    Article  CAS  PubMed  Google Scholar 

  39. N. A. Akmanova, Kh. F. Sagitdinova, E. S. Balenkova, Chem. Heterocycl. Compd., 1982, 18, 910; DOI: https://doi.org/10.1007/BF00513429.

    Article  Google Scholar 

  40. V. V. Diev, O. N. Stetsenko, T. Q. Tran, J. Kopf, R. R. Kostikov, A. P. Molchanov, J. Org. Chem., 2008, 73, 2396; DOI: https://doi.org/10.1021/jo702379d.

    Article  CAS  PubMed  Google Scholar 

  41. J. Hu, M. Zhang, Y. Gong, Eur. J. Org. Chem., 2015, 1970; DOI: https://doi.org/10.1002/ejoc.201403551.

  42. S. Kagabu, K. Saito, H. Watanabe, K. Takahashi, K. Wada, Bull. Chem. Soc. Jpn., 1991, 64, 106; DOI: https://doi.org/10.1246/bcsj.64.106.

    Article  CAS  Google Scholar 

  43. X. Xu, P. J. Zavalij, M. P. Doyle, Chem. Commun., 2013, 49, 10287; DOI: https://doi.org/10.1039/c3cc46415f.

    Article  CAS  Google Scholar 

  44. Q.-Q. Cheng, J. Yedoyan, H. Arman, M. P. Doyle, J. Am. Chem. Soc., 2016, 138, 44; DOI: https://doi.org/10.1021/jacs.5b10860.

    Article  CAS  PubMed  Google Scholar 

  45. F. G. Adly, K. O. Marichev, J. A. Jensen, H. Arman, M. P. Doyle, Org. Lett., 2019, 21, 40; DOI: https://doi.org/10.1021/acs.orglett.8b03421.

    Article  CAS  PubMed  Google Scholar 

  46. K. O. Marichev, F. G. Adly, A. Carranco, E. Garcia, H. D. Arman, M. P. Doyle, ACS Catal., 2018, 8, 10392; DOI: https://doi.org/10.1021/acscatal.8b03391.

    Article  CAS  Google Scholar 

  47. F. Xie, S. Yu, Z. Qi, X. Li, Angew. Chem., Int. Ed., 2016, 55, 15351; DOI: https://doi.org/10.1002/anie.201609658.

    Article  CAS  Google Scholar 

  48. J.-L. Xu, H. Tian, J.-H. Kang, W.-X. Kang, W. Sun, R. Sun, Y.-M. Li, M. Sun, Org. Lett., 2020, 22, 6739; DOI: https://doi.org/10.1021/acs.orglett.0c02099.

    Article  CAS  PubMed  Google Scholar 

  49. I. G. Bolesov, A. V. Ignatchenko, N. V. Bovin, I. A. Prudchenko, L. S. Surmina, V. V. Plemenkov, P. V. Petrovskii, I. V. Romanov, I. I. Mel’nik, Zh. Org. Khim. [Russ. J. Org. Chem.], 1990, 26, 102 (in Russian).

    CAS  Google Scholar 

  50. S. Chen, J. Ren, Z. Wang, Tetrahedron, 2009, 65, 9146; DOI: https://doi.org/10.1016/j.tet.2009.09.034.

    Article  CAS  Google Scholar 

  51. L. L. Fershtat, I. V. Ovchinnikov, N. N. Makhova, Tetrahedron Lett., 2014, 55, 2398; DOI: https://doi.org/10.1016/j.tetlet.2014.02.112.

    Article  CAS  Google Scholar 

  52. X. Xu, D. Shabashov, P. Y. Zavalij, M. P. Doyle, Org. Lett., 2012, 14, 800; DOI: https://doi.org/10.1021/ol203331r.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. A. Padwa, M. D. Weingarten, Chem. Rev., 1996, 96, 223; DOI: https://doi.org/10.1021/cr950022h.

    Article  CAS  PubMed  Google Scholar 

  54. A. P. Molchanov, V. V. Diev, J. Kopf, R. R. Kostikov, Russ. J. Org. Chem., 2004, 40, 431.

    Article  CAS  Google Scholar 

  55. V. V. Diev, R. R. Kostikov, R. Gleiter, A. P. Molchanov, J. Org. Chem., 2006, 71, 4066; DOI: https://doi.org/10.1021/jo0600656.

    Article  CAS  PubMed  Google Scholar 

  56. C. Nájera, J. M. Sansano, M. Yus, Org. Biomol. Chem., 2015, 13, 8596; DOI: https://doi.org/10.1039/c5ob01086a.

    Article  PubMed  CAS  Google Scholar 

  57. U. Grošelj, J. Svete, in Organic Reactions, Vol. 103b, Ed. P. A. Evans, 2020, John Wiley & Sons, pp. 529–930.

  58. L. Yao, X. Yu, C. Mo, J. Wu, Org. Biomol. Chem., 2012, 10, 9447; DOI: https://doi.org/10.1039/c2ob26824h.

    Article  CAS  PubMed  Google Scholar 

  59. A. P. Molchanov, D. I. Sipkin, Y. B. Koptelov, R. R. Kostikov, Eur. J. Org. Chem., 2002, 453; DOI: https://doi.org/10.1002/1099-0690(20022)2002:3<453::AID-EJOC453>3.0.CO;2-R.

  60. V. Yu. Petukhova, M. I. Pleshchev, L. L. Fershtat, V. V. Kuznetsov, V. V. Kachala, N. N. Makhova, Mendeleev Commun., 2012, 22, 32; DOI: https://doi.org/10.1016/j.mencom.2012.01.012.

    Article  CAS  Google Scholar 

  61. M. I. Pleshchev, V. Yu. Petukhova, V. V. Kuznetsov, D. V. Khakimov, T. S. Pivina, M. I. Struchkova, Y. V. Nelyubina, N. N. Makhova, Mendeleev Commun., 2013, 23, 34; DOI: https://doi.org/10.1016/j.mencom.2013.01.012.

    Article  CAS  Google Scholar 

  62. A. P. Molchanov, D. I. Sipkin, Y. B. Koptelov, R. R. Kostikov, Russ. J. Org. Chem., 2005, 41, 567; DOI: https://doi.org/10.1007/s11178-005-0205-z.

    Article  CAS  Google Scholar 

  63. H. Zheng, M. P. Doyle, Angew. Chem., Int. Ed., 2019, 58, 12502; DOI: https://doi.org/10.1002/anie.201906754.

    Article  CAS  Google Scholar 

  64. K. B. Wiberg, W. J. Bartley, J. Am. Chem. Soc., 1960, 82, 6375; DOI: https://doi.org/10.1021/ja01509a045.

    Article  CAS  Google Scholar 

  65. R. Breslow, T. Eicher, A. Krebs, R. A. Peterson, J. Posner, J. Am. Chem. Soc., 1965, 87, 1320; DOI: https://doi.org/10.1021/ja01084a029.

    Article  CAS  Google Scholar 

  66. H. M. Cohen, J. Heterocycl. Chem. 1967, 4, 130; DOI: https://doi.org/10.1002/jhet.5570040124.

    Article  CAS  Google Scholar 

  67. M. Franck-Neumann, C. Buchecker, Tetrahedron Lett., 1969, 2659; DOI: https://doi.org/10.1016/S0040-4039(01)88236-8.

  68. M. Regitz, W. Welter, A. Hartmann, Chem. Ber., 1979, 112, 2509; DOI: https://doi.org/10.1002/cber.19791120720.

    Article  CAS  Google Scholar 

  69. A. E. Sheshenev, M. S. Baird, A. K. Croft, I. G. Bolesov, Mendeleev Commun., 2004, 14, 299; DOI: https://doi.org/10.1070/MC2004v014n06ABEH002061.

    Article  CAS  Google Scholar 

  70. A. E. Sheshenev, M. S. Baird, A. K. Croft, I. G. Bolesov, Tetrahedron, 2009, 65, 10036; DOI: https://doi.org/10.1016/j.tet.2009.09.098.

    Article  CAS  Google Scholar 

  71. V. M. Boitsov, R. R. Kostikov, A. P. Molchanov, A. V. Stepakov, M. S. Baird, Russ. J. Org. Chem., 2004, 40, 1760; DOI: https://doi.org/10.1007/s11178-005-0095-0.

    Article  CAS  Google Scholar 

  72. V. V. Razin, M. E. Yakovlev, K. V. Shataev, S. I. Selivanov, Russ. J. Org. Chem., 2004, 40, 1027; DOI: https://doi.org/10.1023/B:RUJO.0000045198.22692.97.

    Article  CAS  Google Scholar 

  73. M. E. Yakovlev, V. V. Razin, Russ. J. Org. Chem., 2004, 40, 1033; DOI: https://doi.org/10.1023/B:RUJO.0000045199.21494.c7.

    Article  CAS  Google Scholar 

  74. A. M. Abdelmoniem, I. A. Abdelhamid, Curr. Org. Chem., 2016, 20, 1512; DOI: https://doi.org/10.2174/1385272820666160216224951.

    Article  CAS  Google Scholar 

  75. M. S. Baird, Top. Curr. Chem., 1987, 144, 137; DOI: https://doi.org/10.1007/BFb0111230.

    Article  Google Scholar 

  76. K. Komatsu, T. Kitagawa, Chem. Rev., 2003, 103, 1371; DOI: https://doi.org/10.1021/cr010011q.

    Article  CAS  PubMed  Google Scholar 

  77. G. Tran, D. Gomez Pardo, T. Tsuchiya, S. Hillebrand, J.-P. Vors, J. Cossy, Org. Lett., 2015, 17, 3414; DOI: https://doi.org/10.1021/acs.orglett.5b01370.

    Article  CAS  PubMed  Google Scholar 

  78. P. Rulliére, P. Cyr, A. B. Charette, Org. Lett., 2016, 18, 1988; DOI: https://doi.org/10.1021/acs.orglett.6b00573.

    Article  PubMed  CAS  Google Scholar 

  79. P. Rulliére, G. Benoit, E. M. D. Allouche, A. B. Charette, Angew. Chem., Int. Ed., 2018, 57, 5777; DOI: https://doi.org/10.1002/anie.201802092.

    Article  CAS  Google Scholar 

  80. D. H. Aue, G. S. Helwig, Tetrahedron Lett., 1974, 721; DOI: https://doi.org/10.1016/S0040-4039(01)82314-5.

  81. D. H. Aue, R. B. Lorens, G. S. Helwig, J. Org. Chem., 1979, 44, 1202; DOI: https://doi.org/10.1021/jo01322a003.

    Article  CAS  Google Scholar 

  82. R. Gompper, K. Schönafinge, Chem. Ber., 1979, 112, 1529; DOI: https://doi.org/10.1002/cber.19791120504.

    Article  CAS  Google Scholar 

  83. E. V. Dehmlow, Naser-ud-Din, Chem. Ber., 1981, 114, 1546; DOI: https://doi.org/10.1002/cber.19811140431.

    Article  CAS  Google Scholar 

  84. G. Utecht-Jarrzyńska, M. Jasiński, K. ąwińtek, G. Mlostoń, H. Heimgartner, Heterocycles, 2020, 101, 251; DOI: https://doi.org/10.3987/COM-19-S(F)20.

    Article  Google Scholar 

  85. A. R. Rivero, I. Fernández, C. R. de Arellano, M. A. Sierra, J. Org. Chem., 2015, 80, 1207; DOI: https://doi.org/10.1021/jo502292y.

    Article  CAS  PubMed  Google Scholar 

  86. A. U. Augustin, M. Sensse, P. G. Jones, D. B. Werz, Angew. Chem., Int. Ed., 2017, 56, 14293; DOI: https://doi.org/10.1002/anie.201708346.

    Article  CAS  Google Scholar 

  87. A. Brandi, S. Cicchi, F. M. Cordero, A. Goti, Chem. Rev., 2003, 103, 1213; DOI: https://doi.org/10.1021/cr010005u.

    Article  CAS  PubMed  Google Scholar 

  88. A. Brandi, S. Cicchi, F. M. Cordero, A. Goti, Chem. Rev., 2014, 114, 7317; DOI: https://doi.org/10.1021/cr400686j.

    Article  CAS  PubMed  Google Scholar 

  89. H. Pellisier, Tetrahedron, 2014, 70, 4991; DOI: https://doi.org/10.1016/j.tet.2014.04.057.

    Article  CAS  Google Scholar 

  90. L. Yu, M. Liu, F. Chen, Q. Xu, Org. Biomol. Chem., 2015, 13, 8379; DOI: https://doi.org/10.1039/c5ob00868a.

    Article  CAS  PubMed  Google Scholar 

  91. D.-H. Zhang, X.-Y. Tang, M. Shi, Acc. Chem. Res., 2014, 47, 913; DOI: 10.1021/ar400159r.

    Article  CAS  PubMed  Google Scholar 

  92. E. Nakamura, S. Yamago, Acc. Chem. Res., 2002, 35, 867; DOI: https://doi.org/10.1021/ar0100935.

    Article  CAS  PubMed  Google Scholar 

  93. M. Shi, J.-M. Lu, Y. Wei, L.-X. Shao, Acc. Chem. Res., 2012, 45, 641; DOI: https://doi.org/10.1021/ar200237z.

    Article  CAS  PubMed  Google Scholar 

  94. I. Nakamura, Y. Yamamoto, Adv. Synth. Catal., 2002, 344, 111; DOI: https://doi.org/10.1002/1615-4169(200202)344:2<111::AID-ADSC111>3.0.CO;2-0.

    Article  CAS  Google Scholar 

  95. L. Yu, R. Guo, Org. Prep. Proc. Int., 2011, 43, 209; DOI: https://doi.org/10.1080/00304948.2011.564551.

    Article  CAS  Google Scholar 

  96. T.-L. Liu, Z.-L. He, H.-Y. Tao, Y.-P. Cai, C.-J. Wang, Chem. Commun., 2011, 47, 2616; DOI: https://doi.org/10.1039/c0cc04329j.

    Article  CAS  Google Scholar 

  97. T. Liu, Q. Li, Z. He, J. Zhang, C. Wang, Chin. J. Catal., 2015, 36, 68; DOI: https://doi.org/10.1016/S1872-2067(14)60204-7.

    Article  CAS  Google Scholar 

  98. A. Brandi, A. Goti, Chem. Rev., 1998, 98, 589; DOI: https://doi.org/10.1021/cr940341t.

    Article  CAS  PubMed  Google Scholar 

  99. F. M. Cordero, C. Vurchio, M. Lumini, A. Brandi, Amino Acids, 2013, 44, 769; DOI: https://doi.org/10.1007/s00726-012-1401-0.

    Article  CAS  PubMed  Google Scholar 

  100. X.-C. Hang, Q.-Y. Chen, J.-C. Xiao, Synlett, 2008, 1989; DOI: https://doi.org/10.1055/s-2008-1077966.

  101. A. P. Molchanov, T. Q. Tran, Chem. Heterocycl. Compd., 2013, 49, 479; DOI: https://doi.org/10.1007/s10593-013-1271-8.

    Article  CAS  Google Scholar 

  102. V. V. Diev, T. Q. Tran, A. P. Molchanov, Eur. J. Org. Chem., 2009, 525; DOI: https://doi.org/10.1002/ejoc.200800975.

  103. T. Q. Tran, V. V. Diev, A. P. Molchanov, Tetrahedron, 2011, 67, 2391; DOI: https://doi.org/10.1016/j.tet.2011.02.013.

    Article  CAS  Google Scholar 

  104. T. Q. Tran, R. S. Savinkov, V. V. Diev, G. L. Starova, A. P. Molchanov, Tetrahedron, 2013, 69, 5173; DOI: https://doi.org/10.1016/j.tet.2013.04.054.

    Article  CAS  Google Scholar 

  105. A. P. Molchanov, T. Q. Tran, R. R. Kostikov, Russ. J. Org. Chem., 2011, 47, 269; DOI: https://doi.org/10.1134/S1070428011020187.

    Article  CAS  Google Scholar 

  106. A. P. Molchanov, T. Q. Tran, Russ. J. Org. Chem., 2012, 48, 1283; DOI: https://doi.org/10.1134/S1070428012100041.

    Article  CAS  Google Scholar 

  107. E. V. Sirotkina, M. M. Efremova, A. S. Novikov, V. V. Zarubaev, I. R. Orshanskaya, G. L. Starova, R. R. Kostikov, A. P. Molchanov, Tetrahedron, 2017, 73, 3025; DOI: https://doi.org/10.1016/j.tet.2017.04.014.

    Article  CAS  Google Scholar 

  108. A. P. Molchanov, T. Q. Tran, A. V. Stepakov, G. L. Starova, R. R. Kostikov, Russ. J. Org. Chem., 2014, 50, 78; DOI: https://doi.org/10.1134/S1070428014010151.

    Article  CAS  Google Scholar 

  109. A. Brandi, A. Guarna, A. Goti, F. De Sarlo, Tetrahedron Lett., 1986, 27, 1727; DOI: https://doi.org/10.1016/S0040-4039(00)84358-0.

    Article  CAS  Google Scholar 

  110. A. Hassner, I. Namboothiri, Organic Syntheses Based on Name Reactions, 3rd ed., Elsevier, Oxford, 2012, p. 60.

    Google Scholar 

  111. F. M. Cordero, F. De Sarlo, A. Brandi, Monat. Chem., 2004, 135, 649; DOI: https://doi.org/10.1007/s00706-003-0150-x.

    Article  CAS  Google Scholar 

  112. F. M. Cordero, C. Vurchio, C. Faggi, A. Brandi, Org. Chem. Front., 2016, 3, 1651; DOI: https://doi.org/10.1039/c6qo00410e.

    Article  CAS  Google Scholar 

  113. L. Briccolani-Bandini, A. Brandi, G. Cardini, R. Chelli, F. M. Cordero, C. Gellini, M. Pagliai, J. Org. Chem., 2019, 84, 6757; DOI: https://doi.org/10.1021/acs.joc.9b00499.

    Article  CAS  PubMed  Google Scholar 

  114. E. Ochoa, M. Mann, D. Sperling, J. Fabian, Eur. J. Org. Chem., 2001, 4223; DOI: https://doi.org/10.1002/1099-0690(200111)2001:22<4223::AID-EJOC4223>3.0.CO;2-N.

  115. F. M. Cordero, C. Vurchio, S. Cicchi, A. de Meijere, A. Brandi, Beilstein J. Org. Chem., 2011, 7, 298; DOI: https://doi.org/10.3762/bjoc.7.39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. J. Revuelta, S. Cicchi, A. de Meijere, A. Brandi, Eur. J. Org. Chem., 2008, 1085; DOI: https://doi.org/10.1002/ejoc.200700912.

  117. F. M. Cordero, M. Salvati, C. Vurchio, A. de Meijere, A. Brandi, J. Org. Chem., 2009, 74, 4225; DOI: https://doi.org/10.1021/jo9004684.

    Article  CAS  PubMed  Google Scholar 

  118. T. Q. Tran, V. V. Diev, G. L. Starova, V. V. Gurzhiy, A. P. Molchanov, Eur. J. Org. Chem., 2012, 2054; DOI: https://doi.org/10.1002/ejoc.201200039.

  119. A. P. Molchanov, T. Q. Tran, A. V. Stepakov, R. R. Kostikov, Russ. J. Org. Chem., 2016, 52, 1603; DOI: https://doi.org/10.1134/S1070428016110099.

    Article  CAS  Google Scholar 

  120. A. P. Molchanov, T. Q. Tran, R. R. Kostikov, Russ. Chem. Bull., 2011, 60, 2296; DOI: https://doi.org/10.1007/s11172-011-0351-0.

    Article  CAS  Google Scholar 

  121. X.-P. Ma, J.-F. Zhu, S.-Y. Wu, C.-H. Chen, N. Zou, C. Liang, G.-F. Su, D.-L. Mo, J. Org. Chem., 2017, 82, 502; DOI: https://doi.org/10.1021/acs.joc.6b02544.

    Article  CAS  PubMed  Google Scholar 

  122. A. V. Stepakov, A. G. Larina, V. M. Boitsov, A. P. Molchanov, V. V. Gurzhiy, G. L. Starova, Tetrahedron Lett., 2012, 53, 3411; DOI: https://doi.org/10.1016/j.tetlet.2012.03.093.

    Article  CAS  Google Scholar 

  123. Q. Xiao, S. Ye, J. Wu, Org. Lett., 2012, 14, 3430; DOI: https://doi.org/10.1021/ol301393f.

    Article  CAS  PubMed  Google Scholar 

  124. Y. An, D. Zheng, J. Wu, Chem. Commun., 2014, 50, 9165; DOI: https://doi.org/10.1039/c4cc04341c.

    Article  CAS  Google Scholar 

  125. D. Bai, T. Xu, C. Ma, X. Zheng, B. Liu, F. Xie, X. Li, ACS Catal., 2018, 4194; DOI: https://doi.org/10.1021/acscatal.8b00746.

  126. X.-P. Ma, C.-M. Nong, J. Zhao, X. Lu, C. Liang, D.-L. Mo, Adv. Synth. Catal., 2020, 362, 478; DOI: https://doi.org/10.1002/adsc.201901206.

    Article  CAS  Google Scholar 

  127. B. Hu, J. Zhu, S. Xing, J. Fang, D. Du, Z. Wang, Chem. Eur. J., 2009, 15, 324; DOI: https://doi.org/10.1002/chem.200801990.

    Article  CAS  PubMed  Google Scholar 

  128. L. Wu, M. Shi, Chem. Eur. J., 2010, 16, 1149; DOI: https://doi.org/10.1002/chem.200902510.

    Article  CAS  PubMed  Google Scholar 

  129. A. P. Molchanov, V. V. Diev, J. Magull, D. Vidovic, S. I. Kozhushkov, A. de Meijere, R. R. Kostikov, Eur. J. Org. Chem., 2005, 593; DOI: https://doi.org/10.1002/ejoc.200400601.

  130. K. K. Shen, R. G. Bergman, J. Am. Chem. Soc., 1977, 99, 1655; DOI: https://doi.org/10.1021/ja00447a068.

    Article  CAS  Google Scholar 

  131. W. R. Dolbier, M. J. Seabury, Tetrahedron, 1987, 43, 2437; DOI: https://doi.org/10.1016/S0040-4020(01)81648-3.

    Article  CAS  Google Scholar 

  132. A. de Meijere, S. Teichmann, D. Yu, J. Kopf, M. Oly, N. von Thienen, Tetrahedron, 1989, 45, 2957; DOI: https://doi.org/10.1016/S0040-4020(01)80123-X.

    Article  CAS  Google Scholar 

  133. Yu. V. Tomilov, E. V. Shulishov, O. M. Nefedov, Russ. Chem. Bull., 1991, 40, 939; DOI: https://doi.org/10.1007/BF00961354.

    Article  Google Scholar 

  134. M. A. Chowdhury, H. Senboku, M. Tokuda, Tetrahedron Lett., 2003, 44, 3329; DOI: https://doi.org/10.1016/S0040-4039(03)00571-9.

    Article  CAS  Google Scholar 

  135. L. Wu, M. Shi, J. Org. Chem., 2010, 75, 2296; DOI: https://doi.org/10.1021/jo100105k.

    Article  CAS  PubMed  Google Scholar 

  136. H. Zhao, Y. Xing, P. Lu, Y. Wang, Chem. Eur. J., 2016, 22, 15144; DOI: https://doi.org/10.1002/chem.201603074.

    Article  CAS  PubMed  Google Scholar 

  137. J. K. Crandall, W. W. Conover, J. Org. Chem., 1974, 39, 63; DOI: https://doi.org/10.1021/jo00915a012.

    Article  CAS  Google Scholar 

  138. D. H. Aue, R. B. Lorens, G. S. Helwig, Tetrahedron Lett., 1973, 4795; DOI: https://doi.org/10.1016/S0040-4039(01)87339-1.

  139. J. K. Crandall, W. W. Conover, J. B. Komin, J. Org. Chem., 1975, 40, 2042; DOI: https://doi.org/10.1021/jo00902a006.

    Article  CAS  Google Scholar 

  140. H. Quast, M. Ach, J. Balthasar, T. Hergenröther, D. Regnat, J. Lehmann, K. Banert, Helv. Chim. Acta, 2005, 88, 1589; DOI: https://doi.org/10.1002/hlca.200590126.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. P. Molchanov or M. M. Efremova.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 620–650, April, 2022.

This work was financially supported by the Russian Foundation for Basic Research (Competition “Expansiya” No. 20-13-5014420).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molchanov, A.P., Efremova, M.M. & Kuznetsov, M.A. Cyclopropenes and methylenecyclopropanes in 1,3-dipolar cycloaddition reactions. Russ Chem Bull 71, 620–650 (2022). https://doi.org/10.1007/s11172-022-3460-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3460-z

Key words

Navigation