Skip to main content
Log in

Effect of the linker nature on the antibacterial activity of structural analogs of octenidine

  • Brief Communications
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Four new octenidine analogs with different nature of the linkers between two N-octylpyridin-4-amines fragments were synthesized for the first time. The antibacterial activities of the synthesized compounds against Micrococcus luteus and Escherichia coli were studied by the method of serial dilutions using octenidine as the reference. A dependence of the antibacterial activity of the synthesized structural analogs of octenidine on the lipophilicity of dihalide used as a precursor of the linker was found: the higher the lipophilicity of the linker fragment, the lower the minimum inhibitory concentration of the compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. N. O. Hübner, J. Siebert, A. Kramer, Skin Pharmacol. Physiol., 2010, 23, 244; DOI: https://doi.org/10.1159/000314699.

    Article  Google Scholar 

  2. M. Klebes, C. Ulrich, F. Kluschke, A. Patzelt, S. Vandersee, H. Richter, A. Bob, J. von Hutten, J. T. Krediet, A. Kramer, J. Lademann, B. Lange-Asschenfeld, J. Biophotonics, 2015, 8, 382; DOI: https://doi.org/10.1002/jbio.201400007.

    Article  CAS  Google Scholar 

  3. G. Kampf, Antiseptic Stewardship: Biocide Resistance and Clinical Implications, Springer Nature, Cham, 2018; DOI: https://doi.org/10.1007/978-3-319-98785-9.

    Book  Google Scholar 

  4. R. Alvarez-Marin, M. Aires-de-Sousa, P. Nordmann, N. Keffer, L. Poirel, Eur. J. Clin. Microbiol. Infect. Dis., 2017, 36, 2379; DOI: https://doi.org/10.1007/s10096-017-3070-0.

    Article  CAS  Google Scholar 

  5. V. Briese, G. Neumann, J. Waldschläger, T. W. May, J. Siebert, B. Gerber, Arch. Gynecol. Obstet., 2011, 283, 585; DOI: https://doi.org/10.1007/s00404-010-1414-4.

    Article  CAS  Google Scholar 

  6. A. N. Mikic, S. Stojic, Arch. Gynecol. Obstet., 2015, 292, 371; DOI: https://doi.org/10.1007/s00404-015-3638-9.

    Article  Google Scholar 

  7. A. Swidsinski, V. Loening-Baucke, S. Swidsinski, H. Verstraelen, Arch. Gynecol. Obstet., 2015, 291, 605; DOI https://doi.org/10.1007/s00404-014-3484-1.

    Article  CAS  Google Scholar 

  8. E. Kung, U. Furnkranz, J. Walochnik, Int. J. Antimicrob. Agents, 2019, 53, 116; DOI: https://doi.org/10.1016/j.ijantimicag.20r8.10.016.

    Article  Google Scholar 

  9. M. Loose, K. G. Naber, L. Purcell, M. P. Wirth, F. M. E. Wagenlehner, Urol. Int., 2021, 105, 278; DOI: https://doi.org/10.1159/000512370.

    CAS  PubMed  Google Scholar 

  10. M. Yamamoto, R. Matsumura, Y. Hirata, H. Nagamune, Toxicol. In Vitro, 2019, 54, 75; DOI: https://doi.org/10.1016/j.tiv.2018.09.009.

    Article  CAS  Google Scholar 

  11. A. N. Vereshchagin, A. M. Gordeeva, N. A. Frolov, P. I. Proshin, K. A. Hansford, M. P. Egorov, Eur. J. Org. Chem. 2019, 4123; DOI: https://doi.org/10.1002/ejoc.201900319.

  12. A. N. Vereshchagin, N. A. Frolov, V. Yu. Konyuhova, K. A. Hansford, M. P. Egorov, Mendeleev Commun., 2019, 29, 523; DOI: https://doi.org/10.1016/j.mencom.2019.09.015.

    Article  CAS  Google Scholar 

  13. A. N. Vereshchagin, K. A. Karpenko, M. P. Egorov, Russ. Chem. Bull., 2020, 69, 620; DOI: https://doi.org/10.1007/s11172-020-2808-5.

    Article  CAS  Google Scholar 

  14. A. N. Vereshchagin, N. A. Frolov, V. Yu. Konyuhova, E. A. Kapelistaya, K. A. Hansford, M. P. Egorov, RSC Adv., 2021, 11, 3429; DOI: https://doi.org/10.1039/d0ra08900a.

    Article  CAS  Google Scholar 

  15. I. K. Yakuschenko, N. N. Pozdeeva, V. A. Mumyatova, A. A. Terentiev, S. Y. Gadomsky, Curr. Org. Synth., 2021, 18, 443; DOI: https://doi.org/10.2174/1570179417666201231104453.

    Article  CAS  Google Scholar 

  16. https://scifinder-n.cas.org.

  17. N. Malanovic, A. Ön, G. Pabst, A. Zellner, K. Lohner, Int. J. Antimicrob. Agents, 2020, 56, 106146; DOI: https://doi.org/10.1016/j.ijantimicag.2020.106146.

    Article  CAS  Google Scholar 

  18. S. A. Goncharova, I. K. Yakushchenko, T. A. Raevskaya, T. N. Yakushchenko, N. P. Konovalova, Russ. Chem. Bull., 2019, 68, 181; DOI: https://doi.org/10.1007/s11172-019-2435-1.

    Article  CAS  Google Scholar 

  19. J. J. Chambers, D. M. Kurrasch-Orbaugh, M. A. Parker, D. E. Nichols, J. Med. Chem., 2001, 44, 1003; DOI: https://doi.org/10.1021/jm000491y.

    Article  CAS  Google Scholar 

  20. C.-J. Sun, W. Chen, Y. Li, L.-X. Liu, X.-Q. Wang, L.-J. Li, H.-B. Zhang, X.-D. Yang, RSC Adv., 2014, 4, 16312; DOI: https://doi.org/10.1039/c3ra43183e.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Gadomsky.

Ethics declarations

The authors declare no competing interests.

Additional information

This work was carried out in framework of State Assignment of the Ministry of Science and Higher Education of the Russian Federation for the Institute of Problems of Chemical Physics of the Russian Academy of Sciences according to the theme “Design and Basic Research of the Structures, Properties, and Mechanisms of Biological Effect of New Small Molecules and Supramolecular Systems for the Development of Innovative Target Drugs for the Treatment of Socially Significant Diseases” (state registration No. AAAA-A19-119071890015-6). The studies were conducted using the equipment of the Analytical Center for Collective Use at the Institute of Problems of Chemical Physics of the Russian Academy of Sciences.

No human or animal subjects were used in this research.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 595–597, March, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakushchenko, I.K., Pozdeeva, N.N., Terentiev, A.A. et al. Effect of the linker nature on the antibacterial activity of structural analogs of octenidine. Russ Chem Bull 71, 595–597 (2022). https://doi.org/10.1007/s11172-022-3456-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3456-8

Key words

Navigation