Skip to main content
Log in

Magnetically separable biocatalysts based on glucose oxidase for d-glucose oxidation

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Biocatalytic systems based on glucose oxidase immobilized on the surface of magnetically separable oxides SiO2 and Al2O3 were studied. Silicon and aluminum oxides acquired magnetic properties due to the introduction of magnetic nanoparticles Fe3O4 into their pores. The support surface was modified with reactive amino groups using (3-aminopropyl)triethoxysilane and was activated using glutaraldehyde to achieve covalent bonding of the enzyme to the magnetically separable supports. Glucose oxidase was immobilized on the modified and activated magnetically separable supports. These biocatalytic systems were studied using low-temperature nitrogen adsorption, transmission electron microscopy, and X-ray photoelectron spectroscopy. All the biocatalytic systems were tested in the reaction of oxidation of d-glucose to d-gluconic acid. The highest relative activity (95%) was demonstrated by the biocatalyst based on glucose oxidase immobilized on the surface of magnetically separable silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Dwevedi, Enzyme Immobilization, Springer International Publishing, Switzerland, 2016, p. 45–64; DOI: https://doi.org/10.1007/978-3-319-41418-8_3.

    Book  Google Scholar 

  2. O. Grebennikova, A. Sulman, V. Matveeva, E. Sulman, Reac. Kinet. Mech. Cat., 2020, 130, 317–329; DOI: https://doi.org/10.1007/s11144-020-01762-3.

    Article  CAS  Google Scholar 

  3. B. B. Tikhonov, E. M. Sulman, P. Yu. Stadol’nikova, A. M. Sulman, E. P. Golikova, A. I. Sidorov, V. G. Matveeva, Kataliz v Prom-ti [Catalysis in Industry], 2019, 19, 59–72 (in Russian).

    Article  CAS  Google Scholar 

  4. E. M. Sulman, V. G. Matveeva, L. M. Bronstein, Curr. Opinion in Chem. Eng., 2019, 26, 1–8; DOI: https://doi.org/10.1016/j.coche.2019.06.005.

    Article  Google Scholar 

  5. P. Pal, R. Kumar, S. Banerjee, Chem. Eng. Process, 2016, 104, 160–171; DOI: https://doi.org/10.1016/j.cep.2016.03.009.

    Article  CAS  Google Scholar 

  6. S. G. Anastassiadis, I. G. Morgunov, Rec. Pat. Biotechnol., 2007, 1, 1–14; DOI: https://doi.org/10.2174/187220807780809472.

    Article  Google Scholar 

  7. C. M. Wong, K. H. Wong, X. D. Chen, Appl. Microbiol. Biotechnol., 2008, 78, 927–938; DOI: https://doi.org/10.1007/s00253-008-1407-4.

    Article  CAS  Google Scholar 

  8. T. Jesionowski, J. Zdarta, B. Krajewska, Adsorption, 2014, 20, 801–821; DOI: https://doi.org/10.1007/s10450-014-9623-y.

    Article  CAS  Google Scholar 

  9. I. A. Mazeeva, I. V. Gralevskaya, Tez. Dokl. III Vseross. nauch.-prakt. konf. [Abstr. of the III All-Russ. Sci.-Pract. Conf.] (Ulan-Ude, June 28–29, 2018), Vostochno-Sibirskii gosudarstvennyi universitet tekhnologii i upravleniya, Ulan-Ude, 2018, pp. 69–75 (in Russian).

    Google Scholar 

  10. A. A. Shakov, S. S. Mikhailova, G. N. Konygin, J. Anal. Chem., 2011, 66, 729–734.

    Article  Google Scholar 

  11. Yu. V. Plekhanova, A. N. Reshetilov, A. V. Dubrovskii, A. L. Kim, S. A. Tikhonenko, Tez. Dokl. XIII Mezhdunar. nauch. konf. snauch. molodezhnoy shkoloy im. I. N. Spiridonova [Abstr. of the XIII Int. Sci. Conf. with I. N. Spiridonov Sci. Youth School] (Vladimir—Suzdal, July 03–05, 2018), Grafika, Moscow, 2018, pp. 356–360 (in Russian).

    Google Scholar 

  12. Yu. V. Plekhanova, A. N. Reshetilov, Tez. Dokl. V Pushchinskoy shkoly-konferentsii: materialy V Pushchinskoy shkolykonferentsii [Abstr. of the V Pushchino School-Conf.: Materials of the V Pushchino School-Conf.] (Pushchino, December 03–07, 2018), ID “Voda: khimiya i ekologiya”, Moscow, 2018, pp. 129–131 (in Russian).

  13. N. R. Mohamad, N. H. Marzuki, N. A. Buang, F. Huyop, R. A. Wahab, Biotechnol. Biotec. Eq., 2015, 29, 205–220; DOI: https://doi.org/10.1080/13102818.2015.1008192.

    Article  CAS  Google Scholar 

  14. G. D. Chukin, Khimiya poverkhnosti i stroenie dispersnogo kremnezema [Surface Chemistry and Structure of Dispersed Silica], Paladin, Moscow, 2008, 172 pp. (in Russian).

    Google Scholar 

  15. G. D. Chukin, Stroyenie oksida alyuminiya i katalizatorov gidroobesserivaniya. Mekhanizmy reaktsii [The Structure of Alumina and Hydrodesulfurization Catalysts. Reaction Mechanisms], Paladin, Moscow, 2010, 288 pp. (in Russian).

    Google Scholar 

  16. S. K. Narwal, N. K. Saun, Oleo Sci., 2014, 63, 599–603; DOI: https://doi.org/10.5650/jos.ess13231.

    Article  CAS  Google Scholar 

  17. B. Zou, Y. Hua, F. Cui, L. Jiang, D. Yu, H. Huang, Colloids Interface Sci, 2014, 417, 210–216; DOI: https://doi.org/10.1016/j.jcis.2013.11.029.

    Article  CAS  Google Scholar 

  18. D. Valles, S. Furtado, C. Villadoniga, A. Cantera, Process Biochem., 2011, 46, 592–598; DOI: https://doi.org/10.1016/j.procbio.2010.10.016.

    Article  CAS  Google Scholar 

  19. D. Wang, D. Astruc, Chem. Rev., 2014, 114, 6949–6985; DOI: https://doi.org/10.1021/cr500134h.

    Article  CAS  Google Scholar 

  20. A. Demin, T. Nizamov, A. Pershina, A. Mekhaev, M. Uymin, A. Minin, A. Zakharova, V. Krasnov, M. Abakumov, D. Zhukov, A. Savchenko, I. Schetinin, A. Majouga, Mendeleev Commun., 2019, 29, 631–634; DOI: https://doi.org/10.1016/j.mencom.2019.11.008.

    Article  CAS  Google Scholar 

  21. A. M. Demin, A. V. Vakhrushev, A. V. Mekhaev, M. A. Uimin, V. P. Krasnov, Russ. Chem. Bull., 2021, 70, 449–456; DOI: https://doi.org/10.1007/s11172-021-3107-5.

    Article  CAS  Google Scholar 

  22. A. M. Demin, A. V. Vakhrushev, M. S. Valova, A. S. Minin, D. K. Kuznetsov, M. A. Uimin, V. Ya. Shur, V. P. Krasnov, V. N. Charushin, Russ. Chem. Bull., 2021, 70, 987–994; DOI: https://doi.org/10.1007/s11172-021-3177-4.

    Article  CAS  Google Scholar 

  23. Y. Yang, G. Zhu, G. Wang, Y. Li, R. Tang, J. Mater. Chem. B., 2016, 4, 4726–4731; DOI: https://doi.org/10.1039/C6TB01355D.

    Article  CAS  Google Scholar 

  24. R. Jaquish, A. K. Reilly, B. P. Lawson, L. M. Bronstein, E. P. Golikova, A. M. Sulman, N. V. Lakina, E. M. Sulman, V. G. Matveeva, B. D. Stein, O. P. Tkachenko, Int. J. Biol. Macromol., 2018, 120, 896–905; DOI: https://doi.org/10.1016/j.ijbiomac.2018.08.097.

    Article  CAS  Google Scholar 

  25. L. T. Nguyen, K. L. Yang, Enzyme Microb. Technol., 2017, 100, 52–59; DOI: https://doi.org/10.1016/j.enzmictec.2017.02.007.

    Article  CAS  Google Scholar 

  26. L. C. Acosta, G. M. Perez Goncalves, G. J. Pielak, A. H. Gorensek-Benitez, Protein Sci., 2017, 26, 2417–2425; DOI: https://doi.org/10.1002/pro.3316.

    Article  CAS  Google Scholar 

  27. B. Zhao, L. Zhou, L. Ma, Y. He, J. Gao, D. Li, Y. Jiang, Int. J. Biol. Macromol., 2018, 107, 2034–2043; DOI: https://doi.org/10.1016/j.ijbiomac.2017.10.074.

    Article  CAS  Google Scholar 

  28. Y. M. Yang, J. W. Wang, R. X. Tan, Enzyme Microb. Tech., 2004, 34, 126–131; DOI: https://doi.org/10.1016/j.enzmictec.2003.09.007.

    Article  CAS  Google Scholar 

  29. E. Abutkina, Nanoindustriya [Nanoindustry], 2009, 4, 54–59 (in Russian).

    Google Scholar 

  30. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem., 1985, 54, 2201–2218; DOI: https://doi.org/10.1351/pac198254112201.

    Article  Google Scholar 

  31. T. Yamashita, P. Hayes, Appl. Surf. Sci., 2008, 254, 2441–2449; DOI: https://doi.org/10.1016/j.apsusc.2007.09.063.

    Article  CAS  Google Scholar 

  32. N. Azizi, Z. Rahimi, M. Alipour, RSC Adv., 2015, 5, 61191–61198; DOI: https://doi.org/10.1039/C5RA06176H.

    Article  CAS  Google Scholar 

  33. P. U. Jain, S. D. Samant, ChemistrySelect, 2018, 3, 1967–1975; DOI: https://doi.org/10.1002/slct.201703155.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Matveeva.

Ethics declarations

The authors declare no competing interests.

Additional information

This work was financially supported by the Russian Science Foundation (Project No. 21-19-00192).

No human or animal subjects were used in this research.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 524–530, March, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grebennikova, O.V., Sulman, A.M., Sidorov, A.I. et al. Magnetically separable biocatalysts based on glucose oxidase for d-glucose oxidation. Russ Chem Bull 71, 524–530 (2022). https://doi.org/10.1007/s11172-022-3443-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3443-0

Key words

Navigation