Skip to main content
Log in

Solvent-free and transition metal catalyst-free synthesis of indolo[1,2-f]phenanthridine from 6-chlorophenanthridine

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A new easily scalable synthesis of the important for materials chemistry indolo[1,2-f]phenanthridine from commercially available 6-chlorophenanthridine was developed. The suggested transition metal catalyst-free and solvent-free procedure is more ecologically friendly and cost efficient then the known methods. The yields of indolo[1,2-f]phenanthridine synthesized from 6-chlorophenanthridine in three steps were 20% and 26% if the cyclization was carried out solvent-free and in THF in the presence of lithium 2,2,6,6-tetramethylpiperidide, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Almerico, F. Mingoia, P. Diana, P. Barraja, A. Montalbano, A. Lauria, R. Loddo, L. Sanna, D. Delpiano, M. G. Setzu, C. Musiu, Eur. J. Med. Chem., 2002, 37, 3–10; DOI: https://doi.org/10.1016/S0223-5234(01)01289-2.

    Article  CAS  Google Scholar 

  2. L. Yan, D. Zhao, J. Lan, Y. Cheng, Q. Guo, X. Li, N. Wu, J. You, Org. Biomol. Chem., 2013, 11, 7966–7977; DOI: https://doi.org/10.1039/C3OB41760C.

    Article  CAS  Google Scholar 

  3. V. Galasso, G. De Alti, Tetrahedron, 1969, 25, 2259–2264; DOI: https://doi.org/10.1016/S0040-4020(01)82774-5.

    Article  CAS  Google Scholar 

  4. E. Ahmed, A. L. Briseno, Y. Xia, S. A. Jenekhe, J. Am. Chem. Soc., 2008, 130, 1118–1119; DOI: https://doi.org/10.1021/ja077444g.

    Article  CAS  Google Scholar 

  5. L. Zhu, E.-G. Kim, Y. Yi, E. Ahmed, S. A. Jenekhe, V. Coropceanu, J.-L. Brédas, J. Phys. Chem. C, 2010, 114, 20401–20409; DOI: https://doi.org/10.1021/jp104061c.

    Article  CAS  Google Scholar 

  6. C. Baik, D. Kim, M.-S. Kang, K. Song, S. O. Kang, J. Ko, Tetrahedron, 2009, 65, 5302–5307; DOI: https://doi.org/10.1016/j.tet.2009.04.077.

    Article  CAS  Google Scholar 

  7. E. V. Nosova, S. Achelle, G. N. Lipunova, V. N. Charushin, O. N. Chupakhin, Russ. Chem. Rev., 2019, 88, 1128–1178; DOI: https://doi.org/10.1070/rcr4887.

    Article  CAS  Google Scholar 

  8. I. L. Nikonov, D. S. Kopchuk, G. V. Zyryanov, V. L. Rusinov, Chem. Heterocycl. Compd., 2021, 57, 993–995; DOI: https://doi.org/10.1007/s10593-021-03012-3.

    Article  CAS  Google Scholar 

  9. V. V. Fedotov, V. L. Rusinov, E. N. Ulomsky, E. M. Mukhin, E. B. Gorbunov, O. N. Chupakhin, Chem. Heterocycl. Compd., 2021, 57, 383–409; DOI: https://doi.org/10.1007/s10593-021-02916-4.

    Article  CAS  Google Scholar 

  10. O. S. Taniya, D. S. Kopchuk, A. F. Khasanov, I. S. Kovalev, G. V. Zyryanov, V. N. Charushin, O. N. Chupakhin, Chem. Heterocycl. Compd., 2019, 55, 505–507; DOI: https://doi.org/10.1007/s10593-019-02491-9.

    Article  CAS  Google Scholar 

  11. G. A. Chesnokov, A. A. Ageshina, A. V. Maryanova, S. A. Rzhevskiy, P. S. Gribanov, M. A. Topchiy, M. S. Nechaev, A. F. Asachenko, Russ. Chem. Bull., 2020, 69, 2370–2377; DOI: https://doi.org/10.1007/s11172-020-3028-8.

    Article  CAS  Google Scholar 

  12. D. I. Bugaenko, A. V. Karchava, M. A. Yurovskaya, Russ. Chem. Rev., 2019, 88, 99–159; DOI: https://doi.org/10.1070/rcr4844.

    Article  CAS  Google Scholar 

  13. M. Miura, T. Satoh, D. Takeda, K. Hirano, Heterocycles, 2012, 86, 487; DOI: https://doi.org/10.3987/com-12-s(n)45.

    Article  Google Scholar 

  14. J. Gao, Y. Shao, J. Zhu, J. Zhu, H. Mao, X. Wang, X. Lv, J. Org. Chem., 2014, 79, 9000–9008; DOI: https://doi.org/10.1021/jo501250u.

    Article  CAS  Google Scholar 

  15. T. N. Ngo, P. Ehlers, T. T. Dang, A. Villinger, P. Langer, Org. Biomol. Chem., 2015, 13, 3321–3330; DOI: https://doi.org/10.1039/C5OB00013K.

    Article  CAS  Google Scholar 

  16. G. A. Chesnokov, A. A. Ageshina, M. A. Topchiy, M. S. Nechaev, A. F. Asachenko, Eur. J. Org. Chem., 2019, 4844–4854; DOI: https://doi.org/10.1002/ejoc.201900772.

  17. M. Nikiforov, B. Lai, W. Chen, S. Chen, R. Schaller, J. Strzalka, J. Maser, S. Darling, Energy Environ. Sci., 2013, 6, 1513–1520; DOI: https://doi.org/10.1039/C3EE40556G.

    Article  CAS  Google Scholar 

  18. W. Madelung, Ber. Dtsch. Chem. Ges., 1912, 45, 1128–1134; DOI: https://doi.org/10.1002/cber.191204501160.

    Article  Google Scholar 

  19. H. Liu, W. Han, C. Li, Z. Ma, R. Li, X. Zheng, H. Fu, H. Chen, Eur. J. Org. Chem., 2016, 389–393; DOI: https://doi.org/10.1002/ejoc.201501170.

  20. T. Hirata, I. Takahashi, Y. Suzuki, H. Yoshida, H. Hasegawa, O. Kitagawa, J. Org. Chem., 2016, 81, 318–323; DOI: https://doi.org/10.1021/acs.joc.5b02387.

    Article  CAS  Google Scholar 

  21. V. H. Thorat, N. S. Upadhyay, M. Murakami, C.-H. Cheng, Adv. Synth. Catal., 2018, 360, 284–289; DOI: https://doi.org/10.1002/adsc.201701143.

    Article  CAS  Google Scholar 

  22. X. Fan, X. Zhang, C. Li, Z. Gu, ACS Catal., 2019, 9, 2286–2291; DOI: https://doi.org/10.1021/acscatal.8b04789.

    Article  CAS  Google Scholar 

  23. Y. Moon, E. Jang, S. Choi, S. Hong, Org. Lett., 2018, 20, 240–243; DOI: https://doi.org/10.1021/acs.orglett.7b03600.

    Article  CAS  Google Scholar 

  24. A. W. Chapman, J. Chem. Soc., 1929, 569–572; DOI: https://doi.org/10.1039/JR9290000569.

  25. M. S. Kobzev, A. A. Titov, A. V. Varlamov, Russ. Chem. Bull., 2021, 70, 1213–1259; DOI: https://doi.org/10.1007/s11172-021-3208-1.

    Article  CAS  Google Scholar 

  26. E. H. Huntress, E. B. Hershberg, I. S. Cliff, J. Am. Chem. Soc., 1931, 53, 2720–2724; DOI: https://doi.org/10.1021/ja01358a040.

    Article  CAS  Google Scholar 

  27. P. A. S. Smith, J. Am. Chem. Soc., 1948, 70, 320–323; DOI: https://doi.org/10.1021/ja01181a098.

    Article  CAS  Google Scholar 

  28. C. Graebe, C. A. Wander, Justus Liebigs Ann. Chem., 1893, 276, 245–253; DOI: https://doi.org/10.1002/jlac.18932760205.

    Article  Google Scholar 

  29. D. H. Hey, T. M. Moynehan, J. Chem. Soc., 1959, 1563–1572; DOI: https://doi.org/10.1039/JR9590001563.

  30. A. A. Ageshina, G. K. Sterligov, S. A. Rzhevskiy, M. A. Topchiy, G. A. Chesnokov, P. S. Gribanov, E. K. Melnikova, M. S. Nechaev, A. F. Asachenko, M. V. Bermeshev, Dalton Trans., 2019, 48, 3447–3452; DOI: https://doi.org/10.1039/C9DT00216B.

    Article  CAS  Google Scholar 

  31. S. A. Rzhevskiy, A. A. Ageshina, G. A. Chesnokov, P. S. Gribanov, M. A. Topchiy, M. S. Nechaev, A. F. Asachenko, RSC Adv., 2019, 9, 1536–1540; DOI: https://doi.org/10.1039/C8RA10040C.

    Article  CAS  Google Scholar 

  32. S. A. Rzhevskiy, M. A. Topchiy, V. N. Bogachev, A. A. Ageshina, L. I. Minaeva, G. K. Sterligov, M. S. Nechaev, A. F. Asachenko, Mendeleev Commun., 2021, 31, 478–480; DOI: https://doi.org/10.1016/j.mencom.2021.07.013.

    Article  CAS  Google Scholar 

  33. S. A. Rzhevskiy, M. A. Topchiy, V. N. Bogachev, L. I. Minaeva, I. R. Cherkashchenko, K. V. Lavrov, G. K. Sterligov, M. S. Nechaev, A. F. Asachenko, Mendeleev Commun., 2021, 31, 409–411; DOI: https://doi.org/10.1016/j.mencom.2021.04.042.

    Article  CAS  Google Scholar 

  34. P. S. Gribanov, G. A. Chesnokov, P. B. Dzhevakov, N. Y. Kirilenko, S. A. Rzhevskiy, A. A. Ageshina, M. A. Topchiy, M. V. Bermeshev, A. F. Asachenko, M. S. Nechaev, Mendeleev Commun., 2019, 29, 147–149; DOI: https://doi.org/10.1016/j.mencom.2019.03.009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Asachenko.

Ethics declarations

The authors declare no competing interests.

Additional information

This work was financially supported by the Russian Science Foundation (Project No. 17-13-01076). The starting compounds were synthesized in the framework of the State task of A. V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences. The work was carried out using equipment of the Center for the Collective Use of the Scientific Equipment of the IPS RAS “Analytical Center for Problems of Deep Oil Refining and Petrochemistry”.

No human or animal subjects were used in this research.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 479–483, March, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterligov, G.K., Lysenko, A.N., Drokin, E.A. et al. Solvent-free and transition metal catalyst-free synthesis of indolo[1,2-f]phenanthridine from 6-chlorophenanthridine. Russ Chem Bull 71, 479–483 (2022). https://doi.org/10.1007/s11172-022-3436-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3436-z

Key words

Navigation