Skip to main content
Log in

Sorption and cocrystallization binding of ZrIV ions with hydroxyapatite as a promising carrier of medical radionuclide 89Zr

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A significant difference in behavior of ZrIV ions during their cocrystallization and sorption binding to hydroxyapatite (HAP) is demonstrated. When the concentration of doping ions exceeds 10−4 mol L−1, a chemical reaction with the formation of amorphous zirconium phosphate and complete dissolution of the sorbent occurs in the system rather than sorption. According to the X-ray diffraction and transmission electron microscopy (TEM) data, a similar reaction is also possible at lower concentrations of zirconium ions. The effect of doping ions on the morphology and structure of HAP is significantly lower for the cocrystallization introduction of Zr. In addition, according to high-resolution TEM data, doping ions can uniformly be distributed over the carrier surface or volume. Therefore, this method of binding method can be recommended for the preparation of a target HAP-Zr complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Brandt, J. Cardinale, M. L. Aulsebrook, J. Nucl. Med., 2018, 59, 1500; DOI: https://doi.org/10.2967/jnumed.117.190801.

    Article  CAS  Google Scholar 

  2. D. N. Pandya, S. Pailloux, D. Tatum, Chem. Commun., 2015, 51, 2301; DOI: https://doi.org/10.1039/C4CC09256B.

    Article  CAS  Google Scholar 

  3. C. Perez-Medina, J. Tang, D. Abdel-Atti, J. Nucl. Med., 2015, 56, 1272; DOI: https://doi.org/10.2967/jnumed.115.158956.

    Article  CAS  Google Scholar 

  4. N. Li, Z. Yu, T. Pham, Int. J. Nanomedicine, 2017, 12, 3281; DOI: https://doi.org/10.2147/IJN.S134379.

    Article  CAS  Google Scholar 

  5. L. Karmani, D. Labar, V. Valembois, Contrast Media Mol. Imaging, 2013, 8, 402; DOI: https://doi.org/10.1002/cmmi.1539.

    Article  CAS  Google Scholar 

  6. S. Chakraborty, T. Das, H. D. Sarma, M. Venkatesh, S. Banerjee, Nucl. Med. Biol., 2008, 35, 589.

    Article  CAS  Google Scholar 

  7. A. N. Vasiliev, A. V. Severin, E. Lapshina, J. Radioanal. Nucl. Chem., 2017, 311, 1503; DOI: https://doi.org/10.1007/s10967-016-5007-y.

    Article  CAS  Google Scholar 

  8. A. V. Severin, A. N. Vasiliev, A. V. Gopin, K. I. Enikeev, Russ. Chem. Bull., 2020, 69, 2286; DOI: https://doi.org/10.1007/s11172-020-3041-y.

    Article  CAS  Google Scholar 

  9. A. V. Severin, M. A. Orlova, E. C. Shalamova, T. P. Trofimova, I. A. Ivanov, Russ. Chem. Bull., 2017, 66, 9; DOI: https://doi.org/10.1007/s11172-017-1692-0.

    Article  CAS  Google Scholar 

  10. Z. Evis, C. Ergun, R. H. Doremus, J. Mater. Sci., 2007, 40, 1127.

    Article  Google Scholar 

  11. Y. A. Teterin, A. G. Kazakov, A. Y. Teterin, A.V. Severin, J. Radioanal. Nucl. Chem., 2019, 321, 341.

    Article  CAS  Google Scholar 

  12. A. G. Kazakov, A. V. Severin, J. Radioanal. Nucl. Chem., 2020, 325, 199; DOI: https://doi.org/10.1007/s10967-020-07192-8.

    Article  CAS  Google Scholar 

  13. I. V. Melikhov, V. F. Komarov, A. V. Severin, V. E. Bozhevol’nov, V. N. Rudin, Dokl. Chem., 2000, 373, No. 13, 125.

    Google Scholar 

  14. E. I. Suvorova, V. V. Klechkovskaya, V. F. Komarov, A. V. Severin, V. N. Rudin, Crystallogr. Rep., 2006, 51, 881.

    Article  CAS  Google Scholar 

  15. A. V. Severin, D. A. Pankratov, Russ. J. Inorg. Chem., 2016, 61, 265.

    Article  CAS  Google Scholar 

  16. A. V. Severin, Ya. A. Berezin, M. A. Orlova, T. P. Trofimova, A. Yu. Lupatov, A. Yu. Egorov, I. M. Pleshakov, Russ. Chem. Bull., 2020, 69, 665; DOI: https://doi.org/10.1007/s11172-020-2815-6.

    Article  CAS  Google Scholar 

  17. K. Cheng, Talanta, 1959, 3, 84.

    Google Scholar 

  18. T. Kaludjerovic-Radoicic, S. Raicevic, Chem. Eng. J., 2010, 160, 503.

    Article  CAS  Google Scholar 

  19. Zh. A. Ezhova, V. P. Orlovskii, E. M. Koval’, E. B. Kozhenkova, Zh. Neorg. Khim., 1996, 44, 1779 [Russ. J. Inorg. Chem. (Engl. Transl.), 1996, 44, No. 11].

    Google Scholar 

  20. G. V. Rodicheva, Zh. A. Ezhova, V. P. Orlovskii, N. M. Romanova, Zh. Neorg. Khim., 1998, 43, 914 [Russ. J. Inorg. Chem. (Engl. Transl.), 1998, 43, No. 6].

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Severin.

Ethics declarations

The authors declare no competing interests.

Additional information

This work was financially supported by the Russian Foundation for Basic Research (Project No. 19-08-00055) using equipment of the Scientific and Educational Center for Collective Use “Nanochemistry and Nanomaterials.”

No human or animal subjects were used in this research.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 449–456, March, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Severin, A.V., Orlova, M.A., Kushnir, E.A. et al. Sorption and cocrystallization binding of ZrIV ions with hydroxyapatite as a promising carrier of medical radionuclide 89Zr. Russ Chem Bull 71, 449–456 (2022). https://doi.org/10.1007/s11172-022-3432-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3432-3

Key words

Navigation