Skip to main content
Log in

The use of triethanolamine ammonium salts as catalysts for the addition of carbon dioxide to epoxides

  • Brief Communications
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Ammonium derivatives of triethanolamine have been effectively used as catalysts for the addition of CO2 to epoxides. The iodine additive was found to exert a positive effect on the catalytic activity of these polyhydroxy-containing salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. K. Singh, A. W. Savoy, J. Mol. Liq., 2020, 297, 112038; DOI: https://doi.org/10.1016/j.molliq.2019.112038.

    Article  CAS  Google Scholar 

  2. F. Philippi, T. Welton, Phys. Chem. Chem. Phys., 2021, 23, 6993; DOI: https://doi.org/10.1039/D1CP00216C.

    Article  CAS  Google Scholar 

  3. P. Sun, D. W. Armstrong, Anal. Chim. Acta, 2010, 661, 1; DOI: https://doi.org/10.1016/j.aca.2009.12.007.

    Article  CAS  Google Scholar 

  4. S. Dabral, T. Schaub, Adv. Synth. Catal., 2019, 361, 223; DOI: https://doi.org/10.1002/adsc.201801215.

    Article  CAS  Google Scholar 

  5. C. Calabrese, F. Giacalone, C. Aprile, Catalysts, 2019, 9, 325; DOI: https://doi.org/10.3390/catal9040325.

    Article  Google Scholar 

  6. A. J. Kamphuis, F. Picchioni, P. P. Pescarmona, Green Chem., 2019, 21, 406; DOI: https://doi.org/10.1039/C8GC03086C.

    Article  CAS  Google Scholar 

  7. L. Guo, K. J. Lamb, M. North, Green Chem., 2021, 23, 77; DOI: https://doi.org/10.1039/D0GC03465G.

    Article  CAS  Google Scholar 

  8. J. Sun, S. Zhang, W. Cheng, J. Ren, Tetrahedron Lett., 2008, 49, 3588; DOI: https://doi.org/10.1016/j.tetlet.2008.04.022.

    Article  CAS  Google Scholar 

  9. W.-L. Dai, B. Jin, S.-L. Luo, S.-F. Yin, X.-B. Luo, C.-T. Au, J. CO2 Util., 2013, 3–4, 7; DOI: https://doi.org/10.1016/j.jcou.2013.08.002.

    Article  Google Scholar 

  10. J.-Q. Wang, W-G. Cheng, J. Sun, T.-Y. Shi, X.-P. Zhang, S.-J. Zhang, RSC Adv., 2014, 4, 2360; DOI: https://doi.org/10.1039/C3RA45918G.

    Article  CAS  Google Scholar 

  11. W.-H. Zhang, P.-P. He, S. Wu, J. Xu, Y. Li, G. Zhang, X.-Y. Wei, Appl. Catal. A: Gen., 2016, 509, 111; DOI: https://doi.org/10.1016/j.apcata.2015.10.038.

    Article  CAS  Google Scholar 

  12. S. E. Lyubimov, A. A. Zvinchuk, B. Chowdhury, V. A. Davankov, Russ. Chem. Bull., 2020, 69, 1598; DOI: https://doi.org/10.1007/s11172-020-2941-1.

    Article  CAS  Google Scholar 

  13. S.-W. Park, B.-S. Choi, J.-W. Lee, Korean J. Chem. Eng., 2006, 23, 138; DOI: https://doi.org/10.1007/BF02705705.

    Article  CAS  Google Scholar 

  14. Y. Bedjanian, G. Le Bras, G. Poulet, Chem. Phys. Lett., 1997, 266, 233; DOI: https://doi.org/10.1016/S0009-2614(97)01530-3.

    Article  CAS  Google Scholar 

  15. R. Guidelli, F. Pergola, J. Inorg, Nucl. Chem., 1969, 31, 137; DOI: https://doi.org/10.1016/0022-1902(69)80251-4.

    Article  Google Scholar 

  16. S. E. Lyubimov, A. A. Zvinchuk, R. R. Aysin, B. Chowdhury, Russ. Chem. Bull., 2021, 70, 1533; DOI: https://doi.org/10.1007/s11172-021-3248-6.

    Article  CAS  Google Scholar 

  17. A. S. Nair, S. Cherian, N. Balachandran, U. G. Panicker, S. K. K. Sankaranarayanan, ACS Omega, 2019, 4, 13042; DOI: https://doi.org/10.1021/acsomega.9b00789.

    Article  Google Scholar 

  18. J. Nanclares, Z. S. Petrovic, I. Javni, M. Ionescu, F. Jaramillo, J. Appl. Polym. Sci., 2015, 132, 42492; DOI: https://doi.org/10.1002/app.42492.

    Article  Google Scholar 

  19. H. Zhou, G.-X. Wang, W.-Z. Zhang, X.-B. Lu, ACS Catal. 2015, 5, 6773; DOI: https://doi.org/10.1021/acscatal.5b01409.

    Article  CAS  Google Scholar 

  20. P. A. Carvalho, J. W. Comerford, K. J. Lamb, M. North, P. S. Reiss, Adv. Synth. Catal., 2019, 361, 345; DOI: https://doi.org/10.1002/adsc.201801229.

    Article  CAS  Google Scholar 

  21. J.-Z. Hwang, S.-C. Wang, P.-C. Chen, C.-Y. Huang, J.-T. Yeh, K.-N. Chen, J. Polym. Res., 2012, 19, 9900; DOI: https://doi.org/10.1007/s10965-012-9900-y.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (Project No. 19-43-02031). The authors are grateful to the staff of the Center for Molecular Structure Studies at the A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences of the Ministry of Science and Higher Education of the Russian Federation for conducting NMR experiments and valuable advices.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. E. Lyubimov or B. Chowdhury.

Additional information

Dedicated to the Corresponding Member of the Russian Academy of Sciences A. A. Trifonov on the occasion of his 60th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 404–407, February, 2022.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubimov, S.E., Cherkasova, P.V. & Chowdhury, B. The use of triethanolamine ammonium salts as catalysts for the addition of carbon dioxide to epoxides. Russ Chem Bull 71, 404–407 (2022). https://doi.org/10.1007/s11172-022-3426-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3426-1

Key words

Navigation