Skip to main content
Log in

Synthesis and properties of 1-[(3-fluoroadamantan-1-yl)methyl]-3-R-ureas and 1,1′-(alkan-1,n-diyl)bis{3-[(3-fluoroadamantan-1-yl)methyl]ureas} as promising soluble epoxide hydrolase inhibitors

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A two-step procedure to synthesize (3-fluoroadamantan-1-yl)methyl isocyanate from (3-hydroxyadamantane)acetic acid that involves fluorination with Ishikawa’s reagent on the first step of the synthesis was developed. The reaction of (3-fluoroadamantan-1-yl)methyl isocyanate with aliphatic diamines gave 1,3-disubstituted bis-diureas in 60–97% yields. A strong decrease in the melting points of the obtained ureas (up to ∼70–144 °C) was observed upon introduction of the fluorine atoms at the bridgehead positions of the adamantane unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Wanka, K. Iqbal, P. R. Schreiner, Chem. Rev., 2013, 113, 3516; DOI: https://doi.org/10.1021/cr100264t.

    Article  CAS  Google Scholar 

  2. A. A. Spasov, T. V. Khamidova, L. I. Bugaeva, I. S. Morozov, Pharm. Chem. J., 2000, 34, 1; DOI: https://doi.org/10.1007/BF02524549.

    Article  CAS  Google Scholar 

  3. F. G. Hayden, Antiviral. Res., 2006, 71, 372; DOI: https://doi.org/10.1016/j.antiviral.2006.05.016.

    Article  CAS  Google Scholar 

  4. G. M. Butov, V. V. Burmistrov, D. A. Pitushkin, Russ. J. Org. Chem., 2017, 53, 673; DOI: https://doi.org/10.1134/S1070428017050050.

    Article  CAS  Google Scholar 

  5. A. Luria, A. Bettaieb, Y. Xi, G. J. Shieh, H. C. Liu, H. Inoue, H. J. Tsai, J. D. Imig, F. G. Haj, B. D. Hammock, Proc. Natl Acad. Sci. USA, 2011, 108, 9038; DOI: https://doi.org/10.1073/pnas.1103482108.

    Article  CAS  Google Scholar 

  6. A. V. Smolobochkin, A. S. Gazizov, A. R. Burilov, M. A. Pudovik, Russ. Chem. Bull., 2019, 68, 662; DOI: https://doi.org/10.1007/s11172-019-2473-8.

    Article  CAS  Google Scholar 

  7. N. A. Zefirov, Y. A. Evteeva, A. I. Krasnoperova, A. V. Mamaeva, E. R. Milaeva, S. A. Kuznetsov, O. N. Zefirova, Mendeleev Commun., 2020, 30, 421; DOI: https://doi.org/10.1016/j.mencom.2020.07.005.

    Article  CAS  Google Scholar 

  8. V. J. Jasys, F. Lombardo, T. A. Appleton, J. Bordner, M. Ziliox, R. A. Volkmann, J. Am. Chem. Soc., 2000, 122, 466; DOI: https://doi.org/10.1021/ja992652x.

    Article  CAS  Google Scholar 

  9. J. Y. Liu, H. J. Tsai, C. Morisseau, J. Lango, S. H. Hwang, T. Watanabe, I. H. Kim, B. D. Hammock, Biochem. Pharmacol., 2015, 98, 718; DOI: https://doi.org/10.1016/j.bcp.2015.10.013.

    Article  CAS  Google Scholar 

  10. V. Burmistrov, C. Morisseau, T. R. Harris, G. Butov, B. D. Hammock, Bioorg. Chem., 2018, 76, 510; DOI: https://doi.org/10.1016/j.bioorg.2017.12.024.

    Article  CAS  Google Scholar 

  11. G. M. Butov, V. V. Burmistrov, D. V. Danilov, Russ. Chem. Bull., 2017, 66, 1876; DOI: https://doi.org/10.1007/s11172-017-1961-y.

    Article  CAS  Google Scholar 

  12. G. M. Butov, V. V. Burmistrov, D. V. Danilov, A. D. Averin, C. Morisseau, S. Kodani, B. D. Hammock, Russ. Chem. Bull., 2016, 65, 2299; DOI: https://doi.org/10.1007/s11172-016-1581-y.

    Article  CAS  Google Scholar 

  13. S. Codony, E. Valverde, R. Leiva, J. Brea, M. I. Loza, C. Morisseau, B. D. Hammock, S. Vazquez, Bioorg. Med. Chem., 2019, 27, 115078; DOI: https://doi.org/10.1016/j.bmc.2019.115078.

    Article  CAS  Google Scholar 

  14. V. Burmistrov, C. Morisseau, V. D’yachenko, V. B. Rybakov, G. M. Butov, B. D. Hammock, J. Fluorine Chem., 2019, 220, 48; DOI: https://doi.org/10.1016/j.jfluchem.2019.02.005.

    Article  CAS  Google Scholar 

  15. L. Xing, T. Honda, L. Fitz, I. Ojima, Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agrochemicals, 2019, 181; DOI: https://doi.org/10.1016/B978-0-12-812733-9.00004-0.

  16. D. Wan, J. Yang, C. B. McReynolds, B. Barnych, K. M. Wagner, C. Morisseau, S. H. Hwang, J. Sun, R. Blöcher, B. D. Hammock, Front. Pharmacol., 2019, 10, 464; DOI: https://doi.org/10.3389/fphar.2019.00464.

    Article  CAS  Google Scholar 

  17. B. D. Hammock, C. B. McReynolds, K. Wagner, A. Buckpitt, I. Cortes-Puch, G. Croston, K. S. S. Lee, J. Yang, W. K. Schmidt, S. H. Hwang, J. Med. Chem., 2021, 64, 1856; DOI: https://doi.org/10.1021/acs.jmedchem.0c01886.

    Article  CAS  Google Scholar 

  18. Y. Takahira, M. Chen, Y. Kawamata, P. Mykhailiuk, H. Nakamura, B. K. Peters, S. H. Reisberg, C. Li, L. Chen, T. Hoshikawa, T. Shibuguchi, P. S. Baran, Synlett, 2019, 30, 1178; DOI: https://doi.org/10.1055/s-0037-1611737.

    Article  CAS  Google Scholar 

  19. M. Aoyama, T. Fukuhara, S. Hara, J. Org. Chem., 2008, 73, 4186; DOI: https://doi.org/10.1021/jo8004759.

    Article  CAS  Google Scholar 

  20. M. Monoi, S. Hara, J. Fluor. Chem., 2012 140, 28; DOI: https://doi.org/10.1016/j.jfluchem.2012.04.006.

    Article  CAS  Google Scholar 

  21. S. Hara, M. Aoyama, Synthesis, 2008, 2510; DOI: https://doi.org/10.1055/s-2008-1067205.

  22. T. Shishimi, S. Hara, J. Fluor. Chem., 2013, 145, 128; DOI: https://doi.org/10.1016/j.jfluchem.2012.10.010.

    Article  CAS  Google Scholar 

  23. H. Stetter, J. Mayer, Chem. Ber., 1962, 95, 667; DOI: https://doi.org/10.1002/cber.19620950314.

    Article  CAS  Google Scholar 

  24. G. A. Olah, J. G. Shih, V. V. Krishnamurthy, B. P. Singh, J. Am. Chem. Soc., 1984, 106, 4492; DOI: https://doi.org/10.1021/ja00328a032.

    Article  CAS  Google Scholar 

  25. H. Seto, Z. Qian, H. Yoshioka, Y. Uchibori, M. Umeno, Chem. Lett., 1991, 20, 1185; DOI: https://doi.org/10.1246/cl.1991.1185.

    Article  Google Scholar 

  26. W. Adcock, G. B. Kok, J. Org. Chem., 1987, 52, 356; DOI: https://doi.org/10.1021/jo00379a008.

    Article  CAS  Google Scholar 

  27. R. E. Moore, G. L. Driscoll, J. Org. Chem., 1978, 43, 4978; DOI: https://doi.org/10.1021/jo00420a019.

    Article  CAS  Google Scholar 

  28. S. M. Wilkinson, M. L. Barron, J. O’Brien-Brown, B. Janssen, L. Stokes, E. L. Werry, M. Chishty, K. K. Skarratt, J. A. Ong, D. E. Hibbs, D. J. Vugts, S. Fuller, A. D. Windhorst, M. Kassiou, ACS Chem. Neurosci., 2017, 8, 2374; DOI: https://doi.org/10.1021/acschemneuro.7b00272.

    Article  CAS  Google Scholar 

  29. A. Kolocouris, R. K. Hansen, R. W. Broadhurst, J. Med. Chem., 2004, 47, 4975; DOI: https://doi.org/10.1021/jm0496685.

    Article  CAS  Google Scholar 

  30. A. Takaoka, H. Iwakiri, N. Ishikawa, Bull. Chem. Soc. Jpn, 1979, 52, 3377; DOI: https://doi.org/10.1246/bcsj.52.3377.

    Article  CAS  Google Scholar 

  31. V. V. Burmistrov, D. V. Danilov, V. S. D’yachenko, E. V. Rasskazova, G. M. Butov, Russ. J. Org. Chem., 2020, 56, 735; DOI: https://doi.org/10.1134/S1070428020050024.

    Article  CAS  Google Scholar 

  32. V. Burmistrov, C. Morisseau, K. S. S. Lee, D. S. Shihadih, T. R. Harris, G. M. Butov, B. D. Hammock, Bioorg. Med. Chem. Lett., 2014, 24, 2193; DOI: https://doi.org/10.1016/j.bmcl.2014.03.016.

    Article  CAS  Google Scholar 

  33. S. H. Hwang, A. T. Wecksler, G. Zhang, C. Morisseau, L. V. Nguyen, S. H. Fu, B. D. Hammock, Bioorg. Med. Chem. Lett., 2013, 23, 3732; DOI: https://doi.org/10.1016/j.bmcl.2013.05.011.

    Article  CAS  Google Scholar 

  34. G. M. Butov, V. V. Burmistrov, V. S. D’yachenko, Russ. J. Org. Chem., 2017, 57, 977; DOI: https://doi.org/10.1134/S107042801707003X.

    Article  Google Scholar 

  35. K. Bott, Chem. Ber., 1968, 101, 564; DOI: https://doi.org/10.1002/cber.19681010225.

    Article  CAS  Google Scholar 

  36. D. V. Danilov, V. V. Burmistrov, Y. P. Kuznetsov, V. S. D’yachenko, E. V. Rasskazova, G. M. Butov, Russ. J. Org. Chem., 2021, 57, 327; DOI: https://doi.org/10.1134/S1070428021030027.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Butov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences O. M. Nefedov on the occasion of his 90th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 107–113, January, 2022.

This work was performed using the equipment of the Center for Collective Use of Scientific Equipment (CCU) “New Materials and Resource-Saving Technologies” of the National Research Lobachevsky State University of Nizhny Novgorod.

This work was financially supported by the Russian Science Foundation (Project No. 21-73-20123).

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, D.V., D’yachenko, V.S., Burmistrov, V.V. et al. Synthesis and properties of 1-[(3-fluoroadamantan-1-yl)methyl]-3-R-ureas and 1,1′-(alkan-1,n-diyl)bis{3-[(3-fluoroadamantan-1-yl)methyl]ureas} as promising soluble epoxide hydrolase inhibitors. Russ Chem Bull 71, 107–113 (2022). https://doi.org/10.1007/s11172-022-3383-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3383-8

Key words

Navigation