Skip to main content
Log in

Zinc(II) metal-organic frameworks with 1,4-diazabicyclo[2.2.2]octane N,N′-dioxide: control of the parameters of the cationic porous framework and optical properties

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Four zinc metal-organic frameworks (MOFs) with 1,4-diazabicyclo[2.2.2]octane N,N′-dioxide (odabco) as a bridging ligand were synthesized by varying the solvent and the anionic composition of the reaction medium. The synthesis in a mixture of N, N-dimethylacetamide and water acidified with nitric acid affords the compound [Zn2(odabco)3(OAc)2](NO3)2(1) containing coordinated acetate anions. The compound [Zn2(μ-O)(odabco)3](NO3)2 · NMP · 2H2O (2) crystallizes in a mixture of N-methylpyrrolidone (NMP) and water in the presence of triethylamine as the base. The compound [Zn2(odabco)4](NO3)3(ClO4) · 2 DMF (3) was obtained in N,N-dimethylformamide (DMF) acidified with perchloric acid. The synthesis in a mixture of DMF and dioxane (dox) acidified with a larger amount of perchloric acid produces [Zn(odabco)2](NO3)(ClO4) · 0.4 dox (4). The crystal structures of new compounds 2–4 were determined by single-crystal X-ray diffraction. Compound 2 consists of binuclear {Zn2O}2+ units, serving as nodes in the three-dimensional framework with pcu topology and a solvent-accessible volume (Vpore) of 37%. The isomeric metal-organic coordination frameworks of 3 (Vpore = 42%) and 4 (Vpore = 47%) are built from mononuclear units and have a BCT zeolite topology. The optical absorption of compounds 1–4 was characterized by diffuse reflectance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mukherjee, A. V. Desai, S. K. Ghosh, Coord. Chem. Rev., 2018, 367, 82; DOI: https://doi.org/10.1016/j.ccr.2018.04.001.

    Article  CAS  Google Scholar 

  2. Y. Zhang, S. Yuan, G. Day, X. Wang, X. Yang, H. C. Zhou, Coord. Chem. Rev., 2018, 354, 28; DOI: https://doi.org/10.1016/j.ccr.2017.06.007.

    Article  CAS  Google Scholar 

  3. V. V. Arslanov, M. A. Kalinina, E. V. Ermakova, O. A. Raitman, Yu. G. Gorbunova, O. E. Aksyutin, A. G. Ishkov, V. A. Grachev, A. Yu. Tsivadze, Russ. Chem. Rev., 2019, 88, 775; DOI: https://doi.org/10.1070/RCR4878.

    Article  CAS  Google Scholar 

  4. M. Ding, W. Flaig, H.-L. Jiang, O. M. Yaghi, Chem. Soc. Rev., 2019, 48, 2828; DOI: https://doi.org/10.1039/C8CS00829A.

    Article  Google Scholar 

  5. A. Yu. Tsivadze, O. E. Aksyutin, A. G. Ishkov, M. K. Knyazeva, O. V. Solovtsova, I. E. Men’shchikov, A. A. Fomkin, A. V. Shkolin, E. V. Khozina, V. A. Grachev, Russ. Chem. Rev., 2019, 88, 925; DOI: https://doi.org/10.1070/RCR4873.

    Article  CAS  Google Scholar 

  6. A. A. Sapianik, V. P. Fedin, Russ. J. Coord. Chem., 2020, 46, 443; DOI: https://doi.org/10.1134/S1070328420060093.

    Article  Google Scholar 

  7. M. Viciano-Chumillas, M. Mon, J. Ferrando-Soria, A. Corma, A. Leyva-Pérez, D. Armentano, E. Pardo, Acc. Chem. Res., 2020, 53, 520; DOI: https://doi.org/10.1021/acs.accounts.9b00609.

    Article  CAS  Google Scholar 

  8. S. A. Sapchenko, M. O. Barsukova, T. V. Nokhrina, K. A. Kovalenko, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 2020, 69, 461; DOI: https://doi.org/10.1007/s11172-020-2785-8.

    Article  CAS  Google Scholar 

  9. S. Ali Akbar Razavi, A. Morsali, Coord. Chem. Rev., 2020, 415, 213299; DOI: https://doi.org/10.1016/j.ccr.2020.213299.

    Article  Google Scholar 

  10. A. E. Thorarinsdottir, T. D. Harris, Chem. Rev., 2020, 120, 8716; DOI: https://doi.org/10.1021/acs.chemrev.9b00666.

    Article  CAS  Google Scholar 

  11. D. N. Dybtsev, K. P. Bryliakov, Coord. Chem. Rev., 2021, 437, 213845; DOI: https://doi.org/10.1016/j.ccr.2021.213845.

    Article  CAS  Google Scholar 

  12. A. A. Sapianik, K. D. Smirnov, M. O. Barsukova, D. G. Samsonenko, V. P. Fedin, J. Struct. Chem. (Engl. Transl.), 2019, 60, 609; DOI: https://doi.org/10.1134/S0022476619040115.

    Article  CAS  Google Scholar 

  13. M. S. Zavakhina, D. G. Samsonenko, V. P. Fedin, J. Struct. Chem. (Engl. Transl.), 2019, 60, 279; DOI: https://doi.org/10.1134/S0022476619020136.

    Article  CAS  Google Scholar 

  14. I. E. Ushakov, A. S. Goloveshkin, E. N. Zorina-Tikhonova, A. S. Chistyakov, A. A. Sidorov, I. L. Eremenko, A. D. Volodin, A. V. Vologzhanina, Mendeleev Commun., 2019, 29, 643; DOI: https://doi.org/10.1016/j.mencom.2019.11.012.

    Article  Google Scholar 

  15. A. A. Sapianik, E. E. Semenenko, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, J. Struct. Chem. (Engl. Transl.), 2018, 59, 487; DOI: https://doi.org/10.1134/S0022476618020336.

    Article  CAS  Google Scholar 

  16. K. S. Smirnova, E. V. Lider, S. G. Kozlova, T. S. Sukhikh, N. V. Kuratieva, I. P. Pozdniakov, A. S. Potapov, Russ. Chem. Bull., 2020, 69, 1873; DOI: https://doi.org/10.1007/s11172-020-2973-6.

    Article  CAS  Google Scholar 

  17. K. A. Vinogradova, A. Y. Andreeva, D. P. Pishchur, M. B. Bushuev, J. Struct. Chem. (Engl. Transl.), 2020, 61, 1380; DOI: https://doi.org/10.1134/S0022476620090048.

    Article  CAS  Google Scholar 

  18. D. I. Pavlov, A. A. Ryadun, D. G. Samsonenko, V. P. Fedin, A. S. Potapov, Russ. Chem. Bull., 2021, 70, 857; DOI: https://doi.org/10.1007/s11172-021-3159-6.

    Article  CAS  Google Scholar 

  19. P. A. Demakov, A. A. Ryadun, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, J. Struct. Chem. (Engl. Transl.), 2020, 61, 1965; DOI: https://doi.org/10.1134/S002247662012015X.

    Article  CAS  Google Scholar 

  20. Yu. M. Litvinova, Ya. M. Gayfulin, D. G. Samsonenko, P. V. Dorovatovsky, V. A. Lazarenko, Yu. V. Mironov, J. Struct. Chem. (Engl. Transl.), 2020, 61, 1630; DOI: https://doi.org/10.1134/S0022476620100169.

    Article  CAS  Google Scholar 

  21. A. N. Usoltsev, S. A. Adonin, A. S. Novikov, M. N. Sokolov, V. P. Fedin, Russ. J. Coord. Chem., 2020, 46, 23; DOI: https://doi.org/10.1134/S107032842001008X.

    Article  CAS  Google Scholar 

  22. T. K. Kim, K. J. Lee, J. Y. Cheon, J. H. Lee, S. H. Joo, H. R. Moon, J. Am. Chem. Soc., 2013, 135, 8940; DOI: https://doi.org/10.1021/ja401869h.

    Article  CAS  Google Scholar 

  23. B. Bueken, N. Van Velthoven, A. Krajnc, S. Smolders, F. Taulelle, C. Mellot-Draznieks, G. Mali, T. D. Bennett, D. De Vos, Chem. Mater., 2017, 29, 10478; DOI: https://doi.org/10.1021/acs.chemmater.7b04128.

    Article  CAS  Google Scholar 

  24. P. J. Llabres-Campaner, J. Pitarch-Jarque, R. Ballesteros-Garrido, B. Abarca, R. Ballesteros, E. García-España, Dalton Trans., 2017, 46, 7397; DOI: https://doi.org/10.1039/C7DT00855D.

    Article  CAS  Google Scholar 

  25. P. A. Demakov, S. A. Sapchenko, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 2018, 67, 490; DOI: https://doi.org/10.1007/s11172-018-2098-3.

    Article  CAS  Google Scholar 

  26. L. K. Macreadie, E. J. Mensforth, R. Babarao, K. Konstas, S. G. Telfer, C. M. Doherty, J. Tsanaktsidis, S. R. Batten, M. R. Hill, J. Am. Chem. Soc., 2019, 141, 3828; DOI: https://doi.org/10.1021/jacs.8b13639.

    Article  CAS  Google Scholar 

  27. E. S. Bazhina, N. V. Gogoleva, E. N. Zorina-Tikhonova, M. A. Kiskin, A. A. Sidorov, I. L. Eremenko, J. Struct. Chem. (Engl. Transl.), 2019, 60, 855; DOI: https://doi.org/10.1134/S0022476619060015.

    Article  CAS  Google Scholar 

  28. V. D. Slyusarchuk, P. E. Kruger, C. S. Hawes, ChemPlusChem, 2020, 85, 845; DOI: https://doi.org/10.1002/cplu.202000206.

    Article  CAS  Google Scholar 

  29. P. A. Demakov, A. S. Poryvaev, K. A. Kovalenko, D. G. Samsonenko, M. V. Fedin, V. P. Fedin, D. N. Dybtsev, Inorg. Chem., 2020, 59, 15724; DOI: https://doi.org/10.1021/acs.inorgchem.0c02125.

    Article  CAS  Google Scholar 

  30. D.-L. Long, A. J. Blake, N. R. Champness, M. Schröder, Chem. Commun., 2000, 1369; DOI: https://doi.org/10.1039/B002363I.

  31. D.-L. Long, A. J. Blake, N. R. Champness, C. Wilson, M. Schroder, Angew. Chem., Int. Ed., 2001, 40, 2443; DOI: https://doi.org/10.1002/1521-3773(20010702)40:13<2443::AID-ANIE2443>3.0.CO;2-C.

    Article  Google Scholar 

  32. D.-L. Long, R. J. Hill, A. J. Blake, N. R. Champness, P. Hubberstey, C. Wilson, M. Schröder, Chem. Eur. J., 2005, 11, 1384; DOI: https://doi.org/10.1002/chem.200400594.

    Article  CAS  Google Scholar 

  33. L. Chen, Q. Ji, X. Wang, Q. Pan, X. Cao, G. Xu, CrystEngComm, 2017, 19, 5907; DOI: https://doi.org/10.1039/C7CE00964J.

    Article  CAS  Google Scholar 

  34. P. A. Demakov, Y. A. Yudina, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, J. Struct. Chem. (Engl. Transl.), 2021, 62, 403; DOI: https://doi.org/10.1134/S0022476621030069.

    Article  CAS  Google Scholar 

  35. P. A. Demakov, A. S. Romanov, D. G. Samsonenko, D. N. Dybtsev, V. P. Fedin, Russ. Chem. Bull., 2020, 69, 1511; DOI: https://doi.org/10.1007/s11172-020-2930-4.

    Article  CAS  Google Scholar 

  36. F.-X. Sun, G.-S. Zhu, Q.-R. Fang, S.-L. Qiu, Inorg. Chem. Commun., 2007, 10, 649; DOI: https://doi.org/10.1016/j.inoche.2007.01.027.

    Article  CAS  Google Scholar 

  37. CrysAlisPro 1.171.38.46, Rigaku Oxford Diffraction, 2015.

  38. G. M. Sheldrick, Acta Crystallogr., 2015, A71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Google Scholar 

  39. G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3; DOI: https://doi.org/10.1107/S2053229614024218.

    Google Scholar 

  40. A. L. Spek, Acta Crystallogr., 2015, C71, 9; DOI: https://doi.org/10.1107/S0021889802022112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Fedin.

Additional information

Dedicated to Academician of the Russian Academy of Sciences O. M. Nefedov on the occasion of his 90th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 83–90, January, 2022.

This study was financially supported by the Russian Foundation for Basic Research (Project No. 19-43-543016) and the Government of the Novosibirsk Region.

No human or animal subjects were used in this study.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demakov, P.A., Samsonenko, D.G., Dybtsev, D.N. et al. Zinc(II) metal-organic frameworks with 1,4-diazabicyclo[2.2.2]octane N,N′-dioxide: control of the parameters of the cationic porous framework and optical properties. Russ Chem Bull 71, 83–90 (2022). https://doi.org/10.1007/s11172-022-3380-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3380-y

Key words

Navigation