Skip to main content

Advertisement

Log in

Solvent effect on the rate and direction of furfural transformations during hydrogenation over the Pd/C catalyst

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The rate and directions of transformations during the liquid-phase hydrogenation of furfural with molecular hydrogen in the presence of the 5%Pd/C catalyst (at 423 K, 3 MPa) depend substantially on the chemical nature of the solvent. The main products of the catalytic transformations in alcohols are alkyl furyl ethers. Hydrogenation in solvent environment of aromatic hydrocarbons and 1,4-dioxane (nonpolar solvents), as well as in ethyl acetate and DMF (polar aprotic solvents) leads to the predominant formation of furfuryl alcohol, and its highest selectivity (up to 92%) is achieved with the use of DMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, M. López Granados, Energy Environ. Sci., 2016, 9, 1144; DOI: https://doi.org/10.1039/C5EE02666K.

    Article  CAS  Google Scholar 

  2. S. Chen, R. Wojcieszak, F. Dumeignil, E. Marceau, S. Royer, Chem. Rev., 2018, 118, 11023; DOI: https://doi.org/10.1021/acs.chemrev.8b00134.

    Article  CAS  Google Scholar 

  3. Y. Wang, D. Zhao, D. Rodríguez-Padrón, C. Len, Catalysts, 2019, 9, 796; DOI: https://doi.org/10.3390/catal9100796.

    Article  Google Scholar 

  4. J. Long, W. Zhao, H. Li, S. Yang, in Recent Advances in Development of Platform Chemicals, Eds S. Saravanamurugan, A. Pandey, H. Li, A. Riisager, Elsevier, Amsterdam, 2020, p. 299; DOI: https://doi.org/10.1016/B978-0-444-64307-0.00011-1.

  5. V. P. Kashparova, D. V. Chernysheva, V. A. Klushin, V. E. Andreeva, O. A. Kravchenko, N. V. Smirnova, Russ. Chem. Rev., 2021, 90, 750; DOI: https://doi.org/10.1070/RCR5018.

    Article  Google Scholar 

  6. I. L. Simakova, V. E. Taraban’ko, M. Yu. Chernyak, A. A. Kondrasenko, M. N. Simonova, Zh. SFU. Khim. [Siberian Federal Univ. J., Ser. Chem.], 2015, 8, 482 (in Russian); DOI: https://doi.org/10.17516/1998-2836-2015-8-4-482-490.

    Google Scholar 

  7. R. Kosydar, I. Szewczyk, P. Natkański, D. Duraczyńska, J. Gurgul, P. Kuśtrowski, A. Drelinkiewicz, Surf. Interfaces, 2019, 17, 100379; DOI: https://doi.org/10.1016/j.surfin.2019.100379.

    Article  CAS  Google Scholar 

  8. R. M. Mironenko, V. P. Talsi, T. I. Gulyaeva, M. V. Trenikhin, O. B. Belskaya, React. Kinet., Mech. Catal., 2019, 126, 811; DOI: https://doi.org/10.1007/s11144-018-1505-y.

    Article  CAS  Google Scholar 

  9. R. M. Mironenko, O. B. Belskaya, AIP Conf. Proc., 2019, 2141, 020010; DOI: https://doi.org/10.1063/1.5122029.

    Article  Google Scholar 

  10. R. M. Mironenko, O. B. Belskaya, V. P. Talsi, V. A. Likholobov, J. Catal., 2020, 389, 721; DOI: https://doi.org/10.1016/j.jcat.2020.07.013.

    Article  CAS  Google Scholar 

  11. C. Reichardt, T. Welton, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim, 2011, 692 pp.; DOI: https://doi.org/10.1002/9783527632220.

    Google Scholar 

  12. S. A. Durakov, P. V. Melnikov, E. M. Martsinkevich, A. A. Smirnova, R. S. Shamsiev, V. R. Flid, Russ. Chem. Bull., 2021, 70, 113; DOI: https://doi.org/10.1007/s11172-021-3064-z.

    Article  CAS  Google Scholar 

  13. A. B. Merlo, V. Vetere, J. F. Ruggera, M. L. Casella, Catal. Commun., 2009, 10, 1665; DOI: https://doi.org/10.1016/j.catcom.2009.05.005.

    Article  CAS  Google Scholar 

  14. P. Jia, X. Lan, X. Li, T. Wang, ACS Sustainable Chem. Eng., 2018, 6, 13287; DOI: https://doi.org/10.1021/acssuschemeng.8b02876.

    Article  CAS  Google Scholar 

  15. G. Giorgianni, S. Abate, G. Centi, S. Perathoner, S. van Beuzekom, S.-H. Soo-Tang, J. C. van der Waal, ACS Sustainable Chem. Eng., 2018, 6, 16235; DOI: https://doi.org/10.1021/acssuschemeng.8b03101.

    Article  CAS  Google Scholar 

  16. G. Singh, L. Singh, J. Gahtori, R. K. Gupta, C. Samanta, R. Bal, A. Bordoloi, Mol. Catal., 2021, 500, 111339; DOI: https://doi.org/10.1016/j.mcat.2020.111339.

    Article  CAS  Google Scholar 

  17. R. M. Mironenko, O. B. Belskaya, V. A. Likholobov, Solid Fuel Chem., 2020, 54, 362; DOI: https://doi.org/10.3103/S0361521920060087.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. M. Mironenko or V. A. Likholobov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences O. M. Nefedov on the occasion of his 90th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 64–69, January, 2022.

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for the Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences (Project No. AAAA-A21-121011490008-3). Experiments (GC/MS, NMR) were carried out using the equipment of the shared research center “National Center of Investigation of Catalysts.”

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironenko, R.M., Belskaya, O.B. & Likholobov, V.A. Solvent effect on the rate and direction of furfural transformations during hydrogenation over the Pd/C catalyst. Russ Chem Bull 71, 64–69 (2022). https://doi.org/10.1007/s11172-022-3377-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3377-6

Key words

Navigation