Skip to main content
Log in

Low-temperature molecular motions in a deep eutectic solvent choline chloride/urea studied by spin-probe EPR

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Deep eutectic solvents (DESs) are eutectic mixtures of substances with the melting points considerably lower than those for their individual components. The study of various properties of DESs is currently attracting great attention due to the possibilities of their use as solvents in a wide variety of technological fields. In this work, it is shown using a choline chloride/urea mixture (1:2) that the method of pulsed spin-probe EPR can be used to study low-temperature stochastic molecular librations in DESs. A peculiarity of this type of motion is its sensitivity to the nanostructure of the substance under study. The studies carried out in this work showed that the choline chloride/urea mixture (1:2) exhibits a glass transition considerably broadened in temperature and starting below macroscopic glass transition. This broadening indicates that its nanostructure is rather loosely packed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Smith, A. P. Abbott, K. S. Ryder, Chem. Rev., 2014, 114, 11060; DOI: https://doi.org/10.1021/cr300162p.

    Article  CAS  Google Scholar 

  2. A. P. Abbott, G. Capper, D. L. Davies, H. L. Munro, R. K. Rasheed, V. Tambyrajah, Chem. Commun., 2001, № 19, 2010; DOI: https://doi.org/10.1039/B106357J.

    Article  CAS  Google Scholar 

  3. F. Liu, Z. Xue, X. Zhao, H. Mou, J. He, T. Mu, Chem. Commun., 2018, 54, 6140; DOI: https://doi.org/10.1039/C8CC03798A.

    Article  CAS  Google Scholar 

  4. S. Emami, A. Shayanfar, Pharm. Dev. Technol., 2020, 25, 1; DOI: https://doi.org/10.1080/10837450.2020.1735414.

    Article  CAS  Google Scholar 

  5. C. J. Clarke, W.-C. Tu, O. Levers, A. Brohl, J. P. Hallett, Chem. Rev., 2018, 118, 747; DOI: https://doi.org/10.1021/acs.chemrev.7b00571.

    Article  CAS  Google Scholar 

  6. S. Hong, X. J. Shen, Z. M. Xue, Z. H. Sun, T. Q. Yuan, Green Chem., 2020, 22, 7219; DOI: https://doi.org/10.1039/d0gc02439b.

    Article  CAS  Google Scholar 

  7. B. B Hansen, S. Spittle, S. B. Chen, D. Poe, Y. Zhang, J. M. Klein, A. Horton, L. Adhikari, T. Zelovich, B. W. Doherty, B. Gurkan, E. J. Maginn, A. Ragauskas, M. Dadmun, T. A. Zawodzinski, G. A. Baker, M. E. Tuckerman, R. F. Savinell, J. R. Sangoro, Chem. Rev., 2021, 121, 1232; DOI: https://doi.org/10.1021/acs.chemrev.0c00385.

    Article  CAS  Google Scholar 

  8. V. N. Charushin, O. N. Chupakhin, Russ. Chem. Bull., 2019, 68, 453; DOI: https://doi.org/10.1007/s11172-019-2441-3.

    Article  CAS  Google Scholar 

  9. E. E. Said-Galiev, M. L. Keshtov, A. R. Khokhlov, Ya. S. Vygodsky, R. A. Dvorikova, N. M. Belomoina, E. G. Buly-cheva, Russ. Chem. Bull., 2020, 69, 1035; DOI: https://doi.org/10.1007/s11172-020-2865-9.

    Article  CAS  Google Scholar 

  10. S. Kaur, M. Kumari, H. K. Kashyap, J. Chem. Phys. B, 2020, 124, 10601; DOI: https://doi.org/10.1021/acs.jpcb.0c07934.

    Article  CAS  Google Scholar 

  11. D. Reuter, P. Munzner, C. Gainaru, P. Lunkenheimer, A. Loidl, R. Bohmer, J. Chem. Phys., 2021, 154, 154501; DOI: https://doi.org/10.1063/5.0045448.

    Article  CAS  Google Scholar 

  12. D. A. Erilov, R. Bartucci, R. Guzzi, D. Marsh, S. A. Dzuba, L. Sportelli, Biophys. J., 2004, 87, 3873; DOI: https://doi.org/10.1529/biophysj.104.046631.

    Article  CAS  Google Scholar 

  13. N. P. Isaev, S. A. Dzuba, J. Phys. Chem. B, 2008, 112, 13285; DOI: https://doi.org/10.1021/jp805794c.

    Article  CAS  Google Scholar 

  14. E. A. Golysheva, G. Yu. Shevelev, S. A. Dzuba, J. Chem. Phys., 2017, 147, 064501; DOI: https://doi.org/10.1063/1.4997035.

    Article  CAS  Google Scholar 

  15. Y. Dai, J. van Spronsen, G.-J. Witkamp, R. Verpoorte, Y. H. Choi, Anal. Chim. Acta, 2013, 766, 61; https://doi.org/10.1016/j.aca.2012.12.019.

    Article  CAS  Google Scholar 

  16. S. N. Tripathy, Z. Wojnarowska, J. Knapik, H. Shirota, R. Biswas, M. Paluch, J. Chem. Phys., 2015, 142, 184504; DOI: https://doi.org/10.1063/1.4919946.

    Article  CAS  Google Scholar 

  17. E. A. Golysheva, S. A. Dzuba, Chem. Phys. Lipids, 2020, 226, 104817; DOI: https://doi.org/10.1016/j.chemphyslip.2019.104817.

    Article  CAS  Google Scholar 

  18. E. A. Golysheva, M. de Zotti, C. Toniolo, F. Formaggio, S. A. Dzuba, Appl. Magn. Reson., 2018, 49, 1369; DOI: https://doi.org/10.1007/s00723-018-1066-2.

    Article  CAS  Google Scholar 

  19. E. Aloi, R. Bartucci, Biophys. Chem., 2019, 253, 106229; DOI: https://doi.org/10.1016/j.bpc.2019.106229.

    Article  CAS  Google Scholar 

  20. E. A. Golysheva, R. I. Samoilova, M. De Zotti, F. Formaggio, M. Gobbo, S. A. Dzuba, Appl. Magn. Reson., 2020, 51, 1019; DOI: https://doi.org/10.1007/s00723-020-01212-2.

    Article  CAS  Google Scholar 

  21. M. Yu. Ivanov, S. A. Prikhod’ko, N. Yu. Adonin, I. A. Kirilyuk, S. V. Adichtchev, N. V. Surovtsev, S. A. Dzuba, M. V. Fedin, J. Phys. Chem. Lett., 2018, 9, 4607, DOI: https://doi.org/10.1021/acs.jpclett.8b02097.

    Article  CAS  Google Scholar 

  22. M. Yu. Ivanov, O. A. Krumkacheva, S. A. Dzuba, M. V. Fedin, Phys. Chem. Chem. Phys., 2017, 19, 26158, DOI: https://doi.org/10.1039/c7cp04890d.

    Article  CAS  Google Scholar 

  23. O. D. Bakulina, M. Yu. Ivanov, S. A. Prikhod’ko, S. Pylaeva, I. V. Zaytseva, N. V. Surovtsev, N. Yu. Adonin, M. V. Fedin, Nanoscale, 2020, 12, 19982; DOI: https://doi.org/10.1039/D0NR06065H.

    Article  CAS  Google Scholar 

  24. H. G. Morrison, C. C. Sun, S. Neervannan, Int. J. Pharm., 2009, 378, 136; DOI: https://doi.org/10.1016/j.ijpharm.2009.05.039.

    Article  CAS  Google Scholar 

  25. F. Chemat, H. Anjum, A. M. Shariff, P. Kumar, T. Murugesan, J. Mol. Liquids, 2016, 218, 301; DOI: https://doi.org/10.1016/j.molliq.2016.02.062.

    Article  CAS  Google Scholar 

  26. S. V. Paschenko, Yu. V. Toropov, S. A. Dzuba, Yu. D. Tsvetkov, A. Kh. Vorobiev, J. Chem. Phys., 1999, 110, 8150; DOI: https://doi.org/10.1063/1.478717.

    Article  CAS  Google Scholar 

  27. A. V. Bogdanov, A. Kh. Vorobiev, Phys. Chem. Chem. Phys., 2016, 18, 31144; DOI: https://doi.org/10.1039/C6CP05815A.

    Article  CAS  Google Scholar 

  28. A. Kh. Vorobiev, A. V. Bogdanov, T. S. Yankova, N. A. Chumakova, J. Phys. Chem. B, 2019, 123, 5875; DOI: https://doi.org/10.1021/acs.jpcb.9b05431.

    Article  CAS  Google Scholar 

  29. Y. V. Toropov, S. A. Dzuba, Y. D. Tsvetkov, V. Monaco, F. Formaggio, M. Crisma, C. Toniolo, J. Raap, Appl. Magn. Reson., 1998, 15, 237; DOI: https://doi.org/10.1007/BF03161875.

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Foundation for Basic Research (Project No. 19-33-90027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Dzuba.

Additional information

Dedicated to Academician of the Russian Academy of Sciences R. Z. Sagdeev on the occasion of his 80th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2366–2369, December, 2021.

The authors are grateful to D. S. Baranov for the synthesis of choline chloride.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golysheva, E.A., Dzuba, S.A. Low-temperature molecular motions in a deep eutectic solvent choline chloride/urea studied by spin-probe EPR. Russ Chem Bull 70, 2366–2369 (2021). https://doi.org/10.1007/s11172-021-3354-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3354-5

Key words

Navigation