Skip to main content
Log in

NMR spectroscopic studies of ligand exchange in paramagnetic complexes of Co and Ni hydrometallatranes

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Paramagnetic complexes of hydrometallatranes with Co2+ and Ni2+ were studied by high-resolution 1H and 13C NMR spectroscopy. The paramagnetic shifts of the signals in the 1H NMR spectra by ∼100 ppm downfield with respect to their position in the spectra of uncoordinated ligands were observed. A similar upfield shift by ∼400 ppm was observed in the 13C NMR spectra. Analysis showed that paramagnetic shifts are caused by the contact hyperfine or electron-nucleus interactions between the unpaired electrons and the resonating nuclei of the ligand molecules. It was found that the preferred tridentate N,O,O-state of the ligand (triethanolamine) in aqueous solutions is accompanied by the intraligand exchange, in which two out of three oxygen centers compete for coordination. Triethanolamine was found to undergo substitution with 1-methylimidazole under mild conditions with the formation of complexes of the composition M(MIm)4X2 (M = Co, Ni; X = Cl, AcO). This causes a paramagnetic shift of the signals in the 13C NMR spectra as a result of the hyperfine interaction of the MIm nuclei with the unpaired spins of the coordinating ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Buddhadev, R. L. Dotson, J. Inorg. Nucl. Chem., 1970, 32, 2707.

    Article  Google Scholar 

  2. A. M. Kirillov, Y. Y. Karabach, M. Haukka, M. F. C. Guedes da Silva, J. Sanchiz, M. N. Kopylovich, A. J. L. Pombeiro, Inorg. Chem., 2008, 47, 162; DOI: https://doi.org/10.1021/ic701669x.

    Article  CAS  Google Scholar 

  3. K. Majid, R. Mushtaq, S. Ahmad, E-J. Chem., 2008, 5, S969; DOI: https://doi.org/10.1155/2008/680324.

    Article  Google Scholar 

  4. H. Icbudak, V. T. Yilmaz, H. Olmez, J. Therm. Anal., 1995, 44, 605; DOI: https://doi.org/10.1007/BF02636280.

    Article  CAS  Google Scholar 

  5. Y. Topcu, O. Andac, V. T. Yilmaz, W. Harrison, J. Coord. Chem., 2002, 55, 805; DOI: https://doi.org/10.1080/0095897022000001557.

    Article  CAS  Google Scholar 

  6. A. Karadag, V. T. Yilmaz, T. Carsten, Polyhedron, 2001, 20, 635; DOI: https://doi.org/10.1016/S0277-5387(01)00720-3.

    Article  CAS  Google Scholar 

  7. A. Karadag, V. T. Yilmaz, Syn. React. Inorg. Met. Org. Chem., 2000, 30, 359; DOI: https://doi.org/10.1080/00945710009351768.

    Article  CAS  Google Scholar 

  8. A. M. Kirillov, M. N. Kopylovich, M. V. Kirillova, E. Yu. Karabach, M. Haukka, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Adv. Synth. Catal., 2006, 348, 159; DOI: https://doi.org/10.1002/adsc.200505216.

    Article  CAS  Google Scholar 

  9. Y. Yu. Karabach, A. M. Kirillov, M. F. C. Guedes da Silva, M. N. Kopylovich, A. J. L. Pombeiro, Cryst. Growth Des., 2006, 6, 2200; DOI: https://doi.org/10.1021/cg060310e.

    Article  CAS  Google Scholar 

  10. Y. Y. Karabach, A. M. Kirillov, M. Haukka, M. N. Kopylovich, A. J. L. Pombeiro, J. Inorg. Biochem., 2008, 102, 1190; DOI: https://doi.org/10.1016/j.jinorgbio.2007.11.007.

    Article  CAS  Google Scholar 

  11. O. Z. Yesilel, H. Ölmez, J. Therm. Anal. Calorim., 2007, 89, 261; DOI: https://doi.org/10.1007/s10973-005-7477-y.

    Article  CAS  Google Scholar 

  12. S. N. Adamovich, E. N. Oborina, Russ. Chem. Bull., 2020, 69, 179; DOI: https://doi.org/10.1007/s11172-020-2742-6.

    Article  CAS  Google Scholar 

  13. Y. H. Wen, H. M. Zhang, P. Qian, H. T. Zhou, P. Zhao, B. L. Yi, Y. S. Yang, Electrochim. Acta, 2006, 51, 3769; DOI: https://doi.org/10.1016/j.electacta.2005.10.040.

    Article  CAS  Google Scholar 

  14. M. G. Voronkov, V. P. Baryshok, Herald Russ. Acad. Sci., 2010, 80, 514; DOI: https://doi.org/10.1134/S1019331610060079.

    Article  Google Scholar 

  15. S. N. Adamovich, E. N. Oborina, Russ. Chem. Bull., 2019, 68, 1723; DOI: https://doi.org/10.1007/s11172-019-2616-y.

    Article  CAS  Google Scholar 

  16. I. A. Ushakov, V. K. Voronov, D. S. Grishmanovskii, S. N. Adamovich, R. G. Mirskov, A. N. Mirskova, Russ. Chem. Bull., 2015, 64, 58; DOI: https://doi.org/10.1007/s11172-015-0821-x.

    Article  CAS  Google Scholar 

  17. I. A. Ushakov, V. K. Voronov, S. N. Adamovich, R. G. Mirskov, A. N. Mirskova, J. Mol. Struct., 2016, 1103, 125; DOI: https://doi.org/10.1016/j.molstruc.2015.08.074.

    Article  CAS  Google Scholar 

  18. V. K. Voronov, I. A. Ushakov, Application of NMR Spectroscopy, Eds Atta-ur-Rahman, M. I. Choudhary, 2016, Vol. 5, 159; DOI: https://doi.org/10.2174/97816810828751160501.

  19. M. C. R. Symons, T. Taiwo, A. M. Sargeson, M. M. Ali, A. S. Tabl, Inorg. Chim. Acta, 1996, 241, 5; DOI: https://doi.org/10.1016/0020-1693(95)04959-2.

    Article  CAS  Google Scholar 

  20. V. K. Voronov, I. A. Ushakov, Russ. Chem. Rev., 2010, 79, 915; DOI: https://doi.org/10.1070/RC2010v079n10ABEH004157.

    Article  CAS  Google Scholar 

  21. S. P. Babailov, Prog. Nucl. Magn. Reson. Spectrosc., 2008, 52, 1; DOI: https://doi.org/10.1016/j.pnmrs.2007.04.002.

    Article  CAS  Google Scholar 

  22. V. K. Voronov, Izv. vuzov. Prikladnaya khimiya i biotekhnologiya [Univ. Bull. Applied Chem. Biotechnol.], 2019, 9, 183; DOI: https://doi.org/10.21285/2227-2925-2019-9-2-183-193 (in Russian).

    CAS  Google Scholar 

  23. N. D. Chuvylkin, R. Z. Sagdeev, G. M. Zhidomirov, Yu. N. Molin, Teoret. i eksper. khimiya [Theor. Exp. Chem.], 1971, 7, 612 (in Russian).

    CAS  Google Scholar 

  24. R. Z. Sagdeev, Yu. N. Molin, R. A. Sadykov, L. B. Volodarskii, G. A. Kutikova, J. Magn. Res., 1973, 9, 13; DOI: https://doi.org/10.1016/0022-2364(73)90155-8.

    CAS  Google Scholar 

  25. E. E. Zaev, V. K. Voronov, M. S. Shvartsberg, S. F. Vasilevsky, Yu. N. Molin, I. L. Kotljarevsky, Tetrahedron Lett., 1968, 5, 617; DOI: https://doi.org/10.1016/S0040-4039(01)98817-3.

    Article  Google Scholar 

  26. V. K. Voronov, I. A. Ushakov, D. S. Grishmanovskii, V. K. Cherkasov, Magn. Reson. Chem., 2013, 51, 636; DOI: https://doi.org/10.1002/mrc.3993.

    Article  CAS  Google Scholar 

  27. R. Z. Sagdeev, V. K. Voronov, A. V. Podoplelov, I. A. Ushakov, A. N. Chemezov, E. Yu. Fursova, S. V. Fokin, G. V. Romanenko, V. A. Reznikov, V. I. Ovcharenko, Russ. Chem. Bull., 2001, 50, 2078; DOI: https://doi.org/10.1023/A:1015036915105.

    Article  CAS  Google Scholar 

  28. M. A. Hass, M. Ubbink, Curr. Opin. Struct. Biol., 2014, 24, 45; DOI: https://doi.org/10.1016/j.sbi.2013.11.010.

    Article  CAS  Google Scholar 

  29. D. Joss, R. Vogel, K. Zimmermann, D. Häussinger, in Comprehensive Coordination Chemistry III, Elsevier, Amsterdam, 2020, p. 1; DOI: https://doi.org/10.1016/B978-0-12-409547-2.14848-6.

    Google Scholar 

  30. C. A. Softley, M. J. Bostock, G. M. Popowicz, M. Sattler, J. Biomol. NMR, 2020, 74, 287; DOI: https://doi.org/10.1007/s10858-020-00322-0.

    Article  CAS  Google Scholar 

  31. F. Camponeschi, R. Muzzioli, S. Ciofi-Baffoni, M. Piccioli, L. Banci, J. Mol. Biol., 2019, 431, 4514; DOI: https://doi.org/10.1016/j.jmb.2019.08.018.

    Article  CAS  Google Scholar 

  32. O. Z. Yesilel, A. Bulut, İ. Ucar, H. İcbudak, H. Ölmez, O. Büyükgüngör, Acta Cryst. E, 2004, 60, m228; DOI: https://doi.org/10.1107/S1600536804001503.

    Article  CAS  Google Scholar 

  33. A. M. C. Dumitriu, M. Cazacu, A. Bargan, S. Shova, C. Turta, Polyhedron, 2013, 50, 255; DOI: https://doi.org/10.1016/j.poly.2012.11.009.

    Article  CAS  Google Scholar 

  34. O. Yu. Kadnikova, Yu. A. Kondratenko, V. V. Gurzhiy, V. L. Ugolkov, T. A. Kochina, Russ. Chem. Bull., 2020, 69, 958; DOI: https://doi.org/10.1007/s11172-020-2855-y.

    Article  CAS  Google Scholar 

  35. V. K. Voronov, I. A. Ushakov, L. V. Baikalova, Russ. Chem. Bull., 2005, 54, 1473; DOI: https://doi.org/10.1007/s11172-005-0429-7.

    Article  CAS  Google Scholar 

  36. M. C. R. M. P. Basto, G. V. A. Silva, A. A. S. C. Machado, Syn. React. Inorg. Met. Org. Chem., 2002, 32, 305; DOI: https://doi.org/10.1081/SIM-120003210.

    Article  CAS  Google Scholar 

  37. J. Titis, R. Boca, L’. Dlhan, T. Durcekova, H. Fuess, R. Ivanikova, V. Mrazova, B. Papankova, I. Svoboda, Polyhedron, 2007, 26, 1523; DOI: https://doi.org/10.1016/j.poly.2006.11.054.

    Article  CAS  Google Scholar 

  38. D. S. Jacob, S. Makhluf, I. Brukental, R. Lavi, L. A. Solovyov, I. Felner, I. Nowik, R. Persky, H. E. Gottlieb, A. Gedanken, Eur. J. Inorg. Chem., 2005, 2005, 2669; DOI: https://doi.org/10.1002/ejic.200500024.

    Article  CAS  Google Scholar 

  39. N. V. Scheglova, T. V. Popova, Russ. Chem. Bull., 2020, 69, 1771; DOI: https://doi.org/10.1007/s11172-020-2961-x.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research and the Government of the Irkutsk Region (Project No. 20-43-380001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Ushakov.

Additional information

Dedicated to Academician of the Russian Academy of Sciences R. Z. Sagdeev on the occasion of his 80th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2354–2358, December, 2021.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronov, V.K., Ushakov, I.A., Adamovich, S.N. et al. NMR spectroscopic studies of ligand exchange in paramagnetic complexes of Co and Ni hydrometallatranes. Russ Chem Bull 70, 2354–2358 (2021). https://doi.org/10.1007/s11172-021-3352-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3352-7

Key words

Navigation