Skip to main content
Log in

Model bacterial system to study the possible effect of strong magnetic fields on biochemical reactions involving free radicals at the cellular level

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The possibility of adapting a chemical system for generating nitric oxide (NO) and superoxide anion (O2•−) upon the decomposition of 3-morpholinosydnonimine (SIN-1) in a buffer solution to the conditions of a similar experiment on bacterial cultures in the field of an MRI scanner was examined. For this system, the magnetic field effect on the recombination of the two radicals to form peroxynitrite (ONOO) in a range of strong magnetic fields was experimentally found earlier and explained by the Δg mechanism. The transition from a model in vitro system involving biologically relevant species NO, O2•−, and ONOO to an in vivo system and the development of a reliable model system with a reproducible magnetic field effect that can be employed as a working tool in further studies were considered. The decomposition of SIN-1 in the presence of components of an LB culture medium for bacterial cultures and the redox activity of the medium itself and a possible autoinitiation of the Fenton reaction on the intrinsic iron content were studied by spectrophotometry and ESR spectroscopy of spin traps. A decrease in the viability and formation of filaments for the E.coli JM109 strain were observed in experiments on the exposition of the bacterial strains in the presence of radical donors in a strong magnetic field of 11.7 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handbook of Biological Effects of Electromagnetic Fields, Eds F. S. Barnes, B. Greenebaum, 3rd ed., 2018, CRC Press, Boca Raton, 960 pp.; DOI: https://doi.org/10.1201/9781315217734.

    Google Scholar 

  2. R. K. Adair, Rep. Prog. Phys., 2000, 63, 415; DOI: https://doi.org/10.1088/0034-4885/63/3/204.

    Article  CAS  Google Scholar 

  3. U. E. Steiner, T. Ulrich, Chem. Rev., 1989, 89, 51; DOI: https://doi.org/10.1021/cr00091a003.

    Article  CAS  Google Scholar 

  4. K. M. Salikhov, Y. N. Molin, R. Z. Sagdeev, A. L. Bucha-chenko, Spin Polarization and Magnetic Effects in Radical Reactions, Akademiai Kiado, Budapest, 1984, 419 pp.

    Google Scholar 

  5. S. G. Boxer, C. E. D. Chidsey, M. G. Roelofs, Ann. Rev. Phys. Chem., 1983, 34, 389; DOI: https://doi.org/10.1146/annurev.pc.34.100183.002133.

    Article  CAS  Google Scholar 

  6. M. B. Taraban, T. V. Leshina, M. A. Anderson, C. B. Grissom, J. Am. Chem. Soc., 1997, 119, 24; DOI: https://doi.org/10.1021/ja9630248.

    Article  Google Scholar 

  7. A. L. Buchachenko, D. A. Kuznetsov, S. E. Arkhangelsky, M. A. Orlova, A. A. Markaryan, Proc. Natl. Acad. Sci. USA, 2005, 102, 10793; DOI: https://doi.org/10.1073/pnas.0504876102.

    Article  CAS  Google Scholar 

  8. U. G. Letuta, V. L. Berdinskiy, Russ. Chem. Bull., 2018, 67, 1732; DOI: https://doi.org/10.1007/s11172-018-2283-4.

    Article  CAS  Google Scholar 

  9. V. K. Koltover, Russ. Chem. Bull., 2021, 70, 1633.

    Article  CAS  Google Scholar 

  10. C. B. Grissom, Chem. Rev., 1995, 95, 3; DOI: https://doi.org/10.1021/cr00033a001.

    Article  CAS  Google Scholar 

  11. B. Brocklehurst, Chem. Soc. Rev., 2002, 31, 301, DOI: https://doi.org/10.1039/B107250C.

    Article  CAS  Google Scholar 

  12. P. D. A. Mills, C. M. Western, B. J. Howard, J. Phys. Chem., 1986, 90, 3331; DOI: https://doi.org/10.1021/j100406a007.

    Article  CAS  Google Scholar 

  13. H. J. Bielski, J. M. Gebicki, J. Am. Chem. Soc., 1982, 104, 796; DOI: https://doi.org/10.1021/ja00367a024.

    Article  CAS  Google Scholar 

  14. T. Yu. Karogodina, S. V. Sergeeva, D. V. Stass, Biophys. J., 2009, 96, 241a; DOI: https://doi.org/10.1016/j.bpj.2008.12.1185.

    Article  Google Scholar 

  15. T. Yu. Karogodina, S. V. Sergeeva, D. V. Stass, U. E. Steiner, Dokl. Phys. Chem., 2011, 436, 5; DOI: https://doi.org/10.1134/S0012501611010027.

    Article  CAS  Google Scholar 

  16. T. Yu. Karogodina, S. V. Sergeeva, D. V. Stass, Appl. Magn. Reson., 2009, 36, 195; DOI: https://doi.org/10.1007/s00723-009-0018-2.

    Article  CAS  Google Scholar 

  17. T. Yu. Karogodina, I. G. Dranov, S. V. Sergeeva, D. V. Stass, U. E. Steiner, ChemPhysChem, 2011, 12, 1714; DOI: https://doi.org/10.1002/cphc.201100178.

    Article  CAS  Google Scholar 

  18. T. Dranova, D. Petrovskii, N. Ershov, I. Slepneva, D. Stass, J. Phys.: Conf. Ser., 2017, 886, 012004; DOI: https://doi.org/10.1088/1742-6596/886/1/012004.

    Google Scholar 

  19. P. Quillardet, O. Huisman, R. D’An, M. Hofnung, Proc. Natl. Acad. Sci. USA, 1982, 79, 5971; DOI: https://doi.org/10.1073/pnas.79.19.5971.

    Article  CAS  Google Scholar 

  20. G. I. Skubnevskaya, L. B. Volodarskii, A. Ya. Tikhonov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1985, 34, 1102; DOI: https://doi.org/10.1007/BF01142814.

    Article  Google Scholar 

  21. R. J. Singh, N. Hogg, J. Joseph, E. Konorev, B. Kalyanaraman, Arch. Biochem. Biophys., 1999, 361, 331; DOI: https://doi.org/10.1006/abbi.1998.1007.

    Article  CAS  Google Scholar 

  22. M. Feelisch, Naunyn-Schmiedeberg’s Arch. Pharmacol., 1998, 358, 113; DOI: https://doi.org/10.1007/pl00005231.

    Article  CAS  Google Scholar 

  23. M. Trujillo, M. Naviliat, M. N. Alvarez, G. Peluffo, R. Radi, Analusis, 2000, 28, 518; DOI: https://doi.org/10.1051/analusis:2000280518.

    Article  CAS  Google Scholar 

  24. C. Szabo, H. Ischiropoulos, R. Radi, Nat. Rev. Drug Discov., 2007, 6, 662; DOI: https://doi.org/10.1038/nrd2222.

    Article  CAS  Google Scholar 

  25. S. Goldstein, J. Lind, G. Merenyi, Chem. Rev., 2005, 105, 2457; DOI: https://doi.org/10.1021/cr0307087.

    Article  CAS  Google Scholar 

  26. T. Yu. Karogodina, S. V. Sergeeva, D. V. Stass, Hemoglobin, 2011, 35, 262; DOI: https://doi.org/10.3109/03630269.2011.570187.

    Article  CAS  Google Scholar 

  27. L. B. Volodarskii, L. N. Grigor’eva, A. Y. Tikhonov, Chem. Heterocycl. Compd., 1983, 19, 1128; DOI: https://doi.org/10.1007/BF00505772.

    Article  Google Scholar 

  28. G. G. Dultseva, G. I. Skubnevskaya, A. Ya. Tikhonov, D. G. Mazhukin, L. B. Volodarsky, J. Phys. Chem., 1996, 100, 17523; DOI: https://doi.org/10.1021/jp960438e.

    Article  CAS  Google Scholar 

  29. V. A. Timoshnikov, T. V. Kobzeva, N. E. Polyakov, G. J. Kontoghiorghes, Free Rad. Biol. Med., 2015, 78, 118; DOI: https://doi.org/10.1016/j.freeradbiomed.2014.10.513.

    Article  CAS  Google Scholar 

  30. V. A. Timoshnikov, T. V. Kobzeva, N. E. Polyakov, G. J. Kontoghiorghes, Int. J. Mol. Sci., 2020, 21, 3967; DOI: https://doi.org/10.3390/ijms21113967.

    Article  Google Scholar 

  31. K. Drlica, M. Malik, R. J. Kerns, X. Zhao, Antimicrob. Agents. Chemother., 2008, 52, 385; DOI: https://doi.org/10.1128/AAC.01617-06.

    Article  CAS  Google Scholar 

  32. M. Stracy, A. J. M. Wollman, E. Kaja, J. Gapinski, J.-E. Lee, V. A. Leek, S. J. McKie, L. A. Mitchenall, A. Maxwell, D. J. Sherratt, M. C. Leake, P. Zawadzki, Nucleic Acids Res., 2019, 47, 210; DOI: https://doi.org/10.1093/nar/gky1143.

    Article  CAS  Google Scholar 

  33. A. L. Koch, J. Gen. Microbiol., 1966, 45, 409; DOI: https://doi.org/10.1099/00221287-45-3-409.

    Article  Google Scholar 

  34. A. L. Koch, E. Ehrenfeld, Biochim. Biophys. Acta, 1968, 165, 262; DOI: https://doi.org/10.1016/0304-4165(68)90054-8.

    Article  CAS  Google Scholar 

  35. X. Wang, X. Zhao, M. Malik, K. Drlica, J. Antimicrob. Chemother., 2010, 65, 520; DOI: https://doi.org/10.1093/jac/dkp486.

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the Center for Collective Use of Microscopic Analysis of Biological Objects of the Siberian Branch of the Russian Academy of Sciences and to the Center for Collective Use “SPF-Vivarium” of the Institute of Cytology and Genetics (Siberian Branch of the Russian Academy of Sciences).

This work was financially supported by the Ministry of Education and Science (Project No. 0259-2021-0010 of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Stass.

Additional information

Dedicated to Academician of the Russian Academy of Sciences R. Z. Sagdeev on the occasion of his 80th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2332–2338, December, 2021.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergeeva, S.V., Petrovsky, D.V., Kobzeva, T.V. et al. Model bacterial system to study the possible effect of strong magnetic fields on biochemical reactions involving free radicals at the cellular level. Russ Chem Bull 70, 2332–2338 (2021). https://doi.org/10.1007/s11172-021-3349-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3349-2

Key words

Navigation