Skip to main content
Log in

Samarium and ytterbium complexes based on sterically hindered 1,2-bis(imino)acenaphthene*

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Reactions of the samarium complex [(ArBIG-bian)2−Sm2+] (1) (ArBIG-bian is the 1,2-bis-[(2,6-dibenzhydryl-4-methylphenyl)imino]acenaphthene dianion) with iodine (0.5 mol. equiv.) or triphenyltin chloride lead to the oxidation of the metal and afford the corresponding derivatives [(ArBIG-bian)2−Sm3+I(dme)] (2) and [(ArBIG-bian)2−Sm3+Cl(dme)] (3). Meanwhile, the reaction of the related ytterbium complex [(ArBIG-bian)2−Yb2+(dme)] (4) with iodine (2:1) or copper(I) chloride resulted in the oxidation of the dianionic ligand rather than the metal to form the compounds [(ArBIG-bian)Yb2+I(dme)] (5) and [(ArBIG-bian)Yb2+Cl]2 (6), respectively. The reaction of 2 with one molar equivalent of potassium pentamethylcyclopentadienide gave the adduct [(ArBIG-bian)2−Sm3+(I)Cp*][K(dme)4] (7). The reaction of samarium complex 1 with 2,2′-bipyridine (bipy) (1:2) is accompanied by the oxidation of SmII to SmIII to form the derivative [(ArBIG-bian)2−Sm3+(bipy)2] (8) containing the radical-anion and neutral bipy ligands. The coordination of a neutral bipyridine molecule to the metal atom in ytterbium iodine complex 5 leads to the metal—ligand electron transfer giving [(ArBIG-bian)2−Yb3+I(bipy)] (9). All the newly synthesized compounds 2, 3, and 5–9 were characterized by IR spectroscopy (complexes 5 and 6 were also characterized by EPR spectroscopy) and elemental analysis. The molecular structures of complexes 2, 3, and 5–9 were determined by X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Dai, X. Sui, C. Chen, Angew. Chem. Int. Ed., 2015, 54, 9948; DOI: https://doi.org/10.1002/anie.201503708.

    Article  CAS  Google Scholar 

  2. D. J. Tempel, L. K. Johnson, R. L. Huff, P. S. White, M. Brookhart, J. Am. Chem. Soc., 2000, 122, 6686; DOI: https://doi.org/10.1021/ja000893v.

    Article  CAS  Google Scholar 

  3. F. Wang, C. Chen, Polym. Chem., 2019, 10, 2354; DOI: https://doi.org/10.1039/C9PY00226J.

    Article  CAS  Google Scholar 

  4. K. Hasan, E. Zysman-Colman, J. Phys. Org. Chem., 2013, 26, 274; DOI: https://doi.org/10.1002/poc.3081.

    Article  CAS  Google Scholar 

  5. U. El-Ayaan, A. Paulovicova, S. Yamada, Y. J. Fukuda, Coord. Chem., 2003, 56, 373; DOI: https://doi.org/10.1080/0095897031000092412.

    Article  CAS  Google Scholar 

  6. J. Y. Wang, R. Ganguly, Y. X. Li, J. Diaz, H. S. Soo, F. Garcia, Inorg. Chem., 2017, 56, 7811; DOI: https://doi.org/10.1021/acs.inorgchem.7b00539.

    Article  CAS  Google Scholar 

  7. N. J. Hill, I. Vargas-Baca, A. H. Cowley, Dalton Trans., 2009, 2, 240; DOI: https://doi.org/10.1039/B815079F.

    Article  Google Scholar 

  8. I. L. Fedushkin, A. A. Skatova, V. A. Chudakova, G. K. Fukin, Angew. Chem., Int. Ed., 2003, 42, 3294; DOI: https://doi.org/10.1002/anie.200351408.

    Article  CAS  Google Scholar 

  9. D. A. Lukina, A. A. Skatova, A. N. Lukoyanov, E. V. Baranov, I. L. Fedushkin, Russ. Chem. Bull., 2021, 70, 908; DOI: https://doi.org/10.1007/s11172-021-3166-7].

    Article  CAS  Google Scholar 

  10. I. L. Fedushkin, O. V. Maslova, A. G. Morozov, S. Dechert, S. Demeshko, F. Meyer, Angew. Chem., Int. Ed., 2012, 51, 10584; DOI: https://doi.org/10.1002/anie.201204452.

    Article  CAS  Google Scholar 

  11. I. L. Fedushkin, O. V. Maslova, M. Hummert, H. Schumann, Inorg. Chem., 2010, 49, 2901; DOI: https://doi.org/10.1021/ic902439x.

    Article  CAS  Google Scholar 

  12. I. L. Fedushkin, A. A. Skatova, D. S. Yambulatov, A. V. Cherkasov, S. V. Demeshko, Russ. Chem. Bull., 2015, 64, 38; DOI: https://doi.org/10.1007/s11172-015-0817-6.

    Article  CAS  Google Scholar 

  13. I. L. Fedushkin, O. V. Maslova, E. V. Baranov, A. S. Shavyrin, Inorg. Chem., 2009, 48, 2355; DOI: https://doi.org/10.1021/ic900022s.

    Article  CAS  Google Scholar 

  14. K. Vasudevan, A. H. Cowley, Chem. Commun., 2007, 33, 3464; DOI: https://doi.org/10.1039/B708758F.

    Article  Google Scholar 

  15. I. L. Fedushkin, D. A. Lukina, A. A. Skatova, A. N. Lukoyanov, A. V. Cherkasov, Chem. Commun., 2018, 54, 12950; DOI: https://doi.org/10.1039/C8CC08108E.

    Article  CAS  Google Scholar 

  16. I. L. Fedushkin, A. N. Lukoyanov, E. V. Baranov, Inorg. Chem., 2018, 57, 4301; DOI: https://doi.org/10.1021/acs.inorgchem.7b03112.

    Article  CAS  Google Scholar 

  17. I. L. Fedushkin, O. V. Maslova, A. N. Lukoyanov, G. K. Fukin, C. R. Chimie, 2010, 13, 584; DOI: https://doi.org/10.1016/j.crci.2010.05.011.

    Article  CAS  Google Scholar 

  18. I. L. Fedushkin, D. S. Yambulatov, A. A. Skatova, E. V. Baranov, S. Demeshko, A. S. Bogomyakov, V. I. Ovcharenko, E. M. Zueva, Inorg. Chem., 2017, 56, 9825; DOI: https://doi.org/10.1021/acs.inorgchem.7b01344.

    Article  CAS  Google Scholar 

  19. D. A. Lukina, A. A. Skatova, V. G. Sokolov, E. V. Baranov, S. Demeshko, S. Yu. Ketkov, I. L. Fedushkin, Dalton Trans., 2020, 49, 14445; DOI: https://doi.org/10.1039/D0DT02963G.

    Article  CAS  Google Scholar 

  20. A. N. Selikhov, D. M. Lyubov, T. V. Mahrova, A. V. Cherkasov, G. K. Fukin, A. A. Trifonov, Russ. Chem. Bull., 2020, 69, 1085; DOI: https://doi.org/10.1007/s11172-020-2871-y.

    Article  CAS  Google Scholar 

  21. A. A. Trifonov, B. G. Shestakov, K. A. Lyssenko, J. Larionova, G. K. Fukin, A. V. Cherkasov, Organometallics, 2011, 30, 4882; DOI: https://doi.org/10.1021/om200429h.

    Article  CAS  Google Scholar 

  22. A. A. Trifonov, B. Shestakov, J. Long, K. Lyssenko, Y. Guari, J. Larionova, Inorg. Chem., 2015, 54, 7667; DOI: https://doi.org/10.1021/acs.inorgchem.5b01318.

    Article  CAS  Google Scholar 

  23. M. N. Chisholm, J. C. Huffman, I. P. Rothwell, P. G. Bradley, N. Kress, W. H. Woodruff, J. Am. Chem. Soc., 1981, 103, 4945; DOI: https://doi.org/10.1021/ja00406a048.

    Article  CAS  Google Scholar 

  24. A. N. Selikhov, T. V. Mahrova, A. V. Cherkasov, G. K. Fukin, J. Larionova, J. Long, A. A. Trifonov, Organometallics, 2015, 34, 1991; DOI: https://doi.org/10.1021/acs.organomet.5b00243.

    Article  CAS  Google Scholar 

  25. L. Guo, W. Kong, Y. Xu, Y. Yang, R. Ma, L. Cong, S. Dai, Z. Liu, J. Organomet. Chem., 2018, 859, 58; DOI: https://doi.org/10.1016/j.jorganchem.2018.01.055.

    Article  CAS  Google Scholar 

  26. S. Stoll, A. Schweiger, J. Magn. Reson., 2006, 178, 42; DOI: https://doi.org/10.1016/j.jmr.2005.08.013.

    Article  CAS  Google Scholar 

  27. Data Collection, Reduction and Correction Program, CrysAlisPro 1.171.40.67a — Software Package, Rigaku OD, 2019.

  28. Bruker SAINT Data Reduction and Correction Program, v. 8.38A, Bruker AXS, Madison, Wisconsin, USA, 2017.

  29. G. M. Sheldrick, Acta Cryst., 2015, A71, 3; DOI:https://doi.org/10.1107/S2053273314026370.

    Google Scholar 

  30. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339; DOI: https://doi.org/10.1107/S0021889808042726.

    Article  CAS  Google Scholar 

  31. G. M. Sheldrick, SHELXTL. Version 6.14. Structure Determination Software Suite, Bruker AXS, Madison (WI), USA, 2003.

    Google Scholar 

  32. SCALE3 ABSPACK: Empirical Absorption Correction, CrysAlisPro 1.171.40.67a — Software Package, Rigaku OD, 2019.

  33. G. M. Sheldrick, SADABS v.2016/2, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA, 2016.

    Google Scholar 

Download references

Funding

The study was performed within the framework of the state assignment and was financially supported by the Russian Foundation for Basic Research (Project No. 19-03-00740) using equipment of the Joint Analytical Center of the G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences with the financial support from the Ministry of Science and Higher Education of the Russian Federation (Grant “Promotion of the Development of Material and Technical Infrastructure of Centers for Collective Use of Scientific Equipment,” Unique Identifier RF-2296.61321X0017, Agreement Number 075-15-2021-670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Skatova.

Additional information

Dedicated to Academician of the Russian Academy of Sciences O. M. Nefedov on the occasion of his 90th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2119–2129, November, 2021.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, V.G., Lukina, D.A., Skatova, A.A. et al. Samarium and ytterbium complexes based on sterically hindered 1,2-bis(imino)acenaphthene*. Russ Chem Bull 70, 2119–2129 (2021). https://doi.org/10.1007/s11172-021-3323-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3323-z

Key words

Navigation