Skip to main content
Log in

Synthesis of 3a,6a-diaza-1,4-diphosphapentalenes and their halogen derivatives. Specific features of the structure and behavior in solutions

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Such ketazines as azines of acetophenone and its substituted derivatives (p-F, m-Cl, p-I, p-Me, p-OMe), acetone, dibenzyl ketone, propiophenone, and indan-2-one were studied in the reaction with phosphorus(ɪɪɪ) chloride. The possibility of the formation of 1,4-dichloro-3a,6a-diaza-1,4-diphosphapentalenes is largely determined by the nature of the starting ketazine. Diazadiphosphapentalene dichlorides exist in solution as a mixture of cis- and trans-isomers, but crystallize exclusively as 1,4-trans-isomers. Reduction of 3a,6a-diaza-1,4-diphosphapentalene dichlorides with manganese in tetrahydrofuran gives the corresponding diazadiphosphapentalenes in 52–63% yield. The electrochemical properties of the obtained compounds were studied by cyclic voltammetry. Two dichlorides of 3a,6a-diaza-1,4-diphosphapentalenes were found to have anomalous oxidation potentials of 0.29 and 0.13 V related to the formation of free diazadiphosphapentalenes in solution as a result of disproportionation under the influence of the donor solvent, which was confirmed by 31P NMR spectroscopy, electronic absorption spectroscopy, and independent syntheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Kornev, Y. S. Panova, V. V. Sushev, D. F. Dorado Daza, A. S. Novikov, A. V. Cherkasov, G. K. Fukin, G. A. Abakumov, Inorg. Chem., 2019, 58, 16144; DOI: https://doi.org/10.1021/acs.inorgchem.9b02690.

    Article  CAS  Google Scholar 

  2. A. N. Kornev, Y. S. Panova, V. V. Sushev, Phosphorus, Sulfur, Silicon, Relat. Elem., 2020, 195, 905; DOI: https://doi.org/10.1080/10426507.2020.1804150.

    Article  CAS  Google Scholar 

  3. Y. S. Panova, V. V. Sushev, D. F. Doroado Daza, N. V. Zolotareva, R. V. Rumyantcev, G. K. Fukin, A. N. Kornev, Inorg. Chem., 2020, 59, 11337; DOI: https://doi.org/10.1021/acs.inorgchem.0c00913.

    Article  CAS  Google Scholar 

  4. A. N. Kornev, V. E. Galperin, Yu. S. Panova, V. V. Sushev, A. V. Cherkasov, A. V. Arapova, G. A. Abakumov, Russ. Chem. Bull., 2018, 67, 2073; DOI: https://doi.org/10.1007/s11172-018-2331-0.

    Article  CAS  Google Scholar 

  5. A. N. Kornev, Yu. S. Panova, V. V. Sushchev, V. E. Galperin, A. V. Sheyanova, G. K. Fukin, E. V. Baranov, G. A. Abakumov, Russ. J. Coord. Chem., 2020, 46, 98; DOI: https://doi.org/10.1134/S1070328420020050.

    Article  CAS  Google Scholar 

  6. A. N. Kornev, V. V. Sushchev, N. V. Zolotareva, A. V. Arapova, V. E. Galperin, A. V. Cherkasov, G. A. Abakumov, Russ. Chem. Bull., 2015, 64, 228; DOI: https://doi.org/10.1007/s11172-015-0848-z.

    Article  CAS  Google Scholar 

  7. A. N. Kornev, V. V. Sushchev, V. V. Kireeva, V. E. Galperin, N. V. Zolotareva, A. V. Cherkasov, G. A. Abakumov, Dokl. Chem. (Engl. Transl.), 2015, 462, 145; DOI: https://doi.org/10.1134/S0012500815060063.

    CAS  Google Scholar 

  8. A. N. Kornev, V. E. Galperin, V. V. Sushev, N. V. Zolotareva, E. V. Baranov, G. K. Fukin, G. A. Abakumov, Eur. J. Inorg. Chem., 2016, 22, 3629; DOI: https://doi.org/10.1002/ejic.201600348.

    Article  Google Scholar 

  9. A. N. Kornev, V. E. Galperin, V. V. Sushev, Yu. S. Panova, G. K. Fukin, A. V. Cherkasov, G. A. Abakumov, Russ. Chem. Bull., 2016, 65, 2658; DOI: https://doi.org/10.1007/s11172-016-1632-4.

    Article  CAS  Google Scholar 

  10. A. N. Kornev, D. F. Dorado Daza, V. V. Sushev, Yu. S. Panova, V. E. Galperin, G. K. Fukin, E. V. Baranov, G. A. Abakumov, Russ. Chem. Bull., 2018, 67, 114; DOI: https://doi.org/10.1007/s11172-018-2045-3.

    Article  CAS  Google Scholar 

  11. A. N. Kornev, V. E. Galperin, V. V. Sushev, N. V. Zolotareva, G. K. Fukin, A. V. Cherkasov, G. A. Abakumov, Russ. Chem. Bull., 2016, 65, 2425; DOI: https://doi.org/10.1007/s11172-016-1601-y.

    Article  CAS  Google Scholar 

  12. A. N. Kornev, V. E. Galperin, Y. S. Panova, A. V. Arapova, E. V. Baranov, G. K. Fukin, G. A. Abakumov, Z. Anorg. Allg. Chem., 2017, 643, 1208; DOI: https://doi.org/10.1002/zaac.201700223.

    Article  CAS  Google Scholar 

  13. A. N. Kornev, V. V. Sushev, Y. S. Panova, O. V. Lukoyanova, S. Yu. Ketkov, E. V. Baranov, G. K. Fukin, M. A. Lopatin, Y. G. Budnikova, G. A. Abakumov, Inorg. Chem., 2014, 53, 3243; DOI: https://doi.org/10.1021/ic500274h.

    Article  CAS  Google Scholar 

  14. A. N. Kornev, O. Y. Gorak, O. V. Lukoyanova, V. V. Sushev, J. S. Panova, E. V. Baranov, G. K. Fukin, S. Y. Ketkov, G. A. Abakumov, Z. Anorg. Allg. Chem., 2012, 638, 1173; DOI: https://doi.org/10.1002/zaac.201200042.

    Article  CAS  Google Scholar 

  15. S. Burck, D. Gudat, K. Nättinen, M. Nieger, M. Niemeyer, D. Schmid, Eur. J. Inorg. Chem., 2007, 5112; DOI: https://doi.org/10.1002/ejic.200700643.

  16. D. Gudat, Eur. J. Inorg. Chem., 1998, 1087; DOI: https://doi.org/10.1002/(SICI)1099-0682(199808)1998:8<1087::AID-EJIC1087>3.0.CO;2-3.

  17. A. N. Kornev, V. V. Sushev, Y. S. Panova, N. V. Zolotareva, E. V. Baranov, G. K. Fukin, G. A. Abakumov, Eur. J. Inorg. Chem., 2015, 2057; DOI: https://doi.org/10.1002/ejic.201500102.

  18. F. Armbruster, U. Klingebiel, M. Noltemeyer, Z. Naturforsch., 2006, 61b, 225; DOI: https://doi.org/10.1515/znb-2006-0301.

    Article  Google Scholar 

  19. Organic Solvents. Physical Properties and Methods of Purification, Ed. A. Weissberger, Interscience Publishers, Inc., New York, 1955.

    Google Scholar 

  20. J. Safari, S. Gandomi-Ravandi, RSC Adv., 2014, 4, 46224; DOI: https://doi.org/10.1039/C4RA04870A.

    Article  CAS  Google Scholar 

  21. Bruker, SAINT Data Reduction and Correction Program v. 8.38A, Bruker AXS, Madison, Wisconsin, USA, 2017.

    Google Scholar 

  22. Data Collection, Reduction and Correction Program, Crys-AlisPro 1.171.38.46, Software Package, Rigaku OD, 2015.

    Google Scholar 

  23. G. M. Sheldrick, Acta Cryst. A, 2015, 71, 3; DOI: https://doi.org/10.1107/S2053273314026370.

    Article  Google Scholar 

  24. G. M. Sheldrick, SHELXTL, Version 6.14. Structure Determination Software Suite, Bruker AXS, Madison, WI, USA, 2003.

    Google Scholar 

  25. G. M. Sheldrick, SADABS v.2016/2, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA, 2016.

    Google Scholar 

  26. SCALE3 ABSPACK: Empirical absorption correction, CrysAlisPro 1.171.38.46, Software Package, Rigaku OD, 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kornev.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1973–1986, October, 2021.

This work was financially supported by the Russian Science Foundation (Project No. 19-13-00400) and was carried out using scientific equipment of the Center for Collective Use “Analytical Center of IOMC RAS” in the G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences within the framework of the federal target program “Research and development in priority areas of development of the scientific and technological complex of Russia for 2014–2020” (unique project identifier RFMEFI62120X0040).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panova, Y.S., Khristolyubova, A.V., Sushev, V.V. et al. Synthesis of 3a,6a-diaza-1,4-diphosphapentalenes and their halogen derivatives. Specific features of the structure and behavior in solutions. Russ Chem Bull 70, 1973–1986 (2021). https://doi.org/10.1007/s11172-021-3305-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3305-1

Key words

Navigation