Skip to main content
Log in

Theoretical estimation of the sublimation enthalpy of azoles

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The crystal structures of number of azoles were modeled using the quantum chemical and Atom-Atom potential methods. The crystal packing was carried out by the local minimization of the crystal structure in the experimental space group, for which purpose the energy of the crystalline lattice was described by a set of van der Waals interactions in the form of the Buckingham 6-exp potential and Coulomb electrostatic interactions. The enthalpies of sublimation of the calculated and experimental crystals are satisfactorily consistent. The prediction for the compounds with earlier unknown enthalpies of sublimation was performed on the basis of the obtained data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Pepekin, Russ. J. Phys. Chem. B, 2010, 4, 954; DOI: https://doi.org/10.1134/s1990793110060138.

    Article  Google Scholar 

  2. T. S. Kon’kova, E. A. Miroshnichenko, A. B. Vorob’ev, Yu. N. Matyushin, T. K. Shkineva, I. L. Dalinger, Russ. Chem. Bull., 2016, 65, 2612; DOI: https://doi.org/10.1007/s11172-016-1626-2.

    Article  Google Scholar 

  3. A. Smirnov, D. Lempert, T. Pivina, in Energetics Science and Technology in Central Europe, Eds R. W. Armstrong, J. M. Short, R. A. Kavetsky, D. K. Anand, University of Maryland, Maryland, 2012, p. 97.

  4. S. W. Benson, Thermochemical Kinetics, John Wiley and Sons Inc., New York, 1976, 820 pp.

    Google Scholar 

  5. H. H. Cady, Estimation of the Density of Organic Explosives from the Structural Formula Unit, Report LA-7760, Los Alamos Lab., CA, 1979, 44 pp.

    Book  Google Scholar 

  6. J. R. Stine, Prediction of Crystal Densities of Organic Explosives by Group Additivity, NM: LANL, Report LA-8920, UC 45, 1981, 102 pp.

  7. D. Becker, JANNAF Combustion Meeting (26th), Vol. 2. (Pasadena, California, October 23–27, 1989), Pasadena, California, 1989.

  8. A. Smirnov, D. Lempert, T. Pivina, D. Khakimov, Eur. J. Energ. Mater., 2011, 8, 233.

    CAS  Google Scholar 

  9. A. S. Smirnov, S. P. Smirnov, T. S. Pivina, D. B. Lempert, L. K. Maslova, Russ. Chem. Bull., 2016, 65, 2315; DOI: https://doi.org/10.1007/s11172-016-1584-8.

    Article  CAS  Google Scholar 

  10. D. V. Sukhachev, T. S. Pivina, V. A. Shlyapochnikov, E. A. Petrov, V. A. Palyunin, N. S. Zefirov, Dokl. Akad. Nauk, 1993, 328, 50 [Dokl. Chem. (Engl. Transl.), 1993].

    Google Scholar 

  11. E. A. Arnautova, M. V. Zakharova, T. S. Pivina, E. A. Smolenskii, D. V. Suhachev, V. V. Shcherbukhin, Russ. Chem. Bull., 1996, 45, 2723.

    Article  Google Scholar 

  12. D. V. Sukhachev, T. S. Pivina, F. S. Volk, Propellants, Explos. Pyrotech., 1994, 19, 159.

    Article  CAS  Google Scholar 

  13. T. M. Klapötke, D. G. Piercey, J. Stierstorfer, M. Weyrauther, Propellants, Explos. Pyrotech., 2012, 37, 527; DOI: https://doi.org/10.1002/prep.201100151.

    Article  Google Scholar 

  14. D. Khakimov, I. Dalinger, T. Pivina, Comput. Theor. Chem., 2015, 1063, 24; DOI: https://doi.org/10.1016/j.comptc.2015.03.017.

    Article  CAS  Google Scholar 

  15. D. C. Sorescu, B. M. Rice, J. Phys. Chem. C, 2010, 114, 6734.

    Article  CAS  Google Scholar 

  16. M. Pakhnova, I. Kruglov, A. Yanilkin, A. Oganov, Phys. Chem. Chem. Phys. 2020, 22, 16822; DOI: https://doi.org/10.1039/D0CP03042B.

    Article  CAS  Google Scholar 

  17. A. J. Pertsin, A. I. Kitaigorodsky, J. Comput. Chem., 1987, 2, 69.

    Google Scholar 

  18. A. V. Dzyabchenko, T. S. Pivina, E. A. Arnautova, J. Mol. Struct., 1996, 378, 67; DOI: https://doi.org/10.1016/0022-2860(95)09165-3.

    CAS  Google Scholar 

  19. D. V. Khakimov, A. V. Dzyabchenko, T. S. Pivina, Russ. Chem. Bull., 2020, 69, 212; DOI: https://doi.org/10.1007/s11172-0202748-0.

    Article  CAS  Google Scholar 

  20. G. Hervé, C. Roussel, H. Graindorge, Angew. Chem., Int. Ed., 2010, 49, 3177; DOI: https://doi.org/10.1002/anie.201000764.

    Article  Google Scholar 

  21. A. I. Kazakov, L. S. Kurochkina, A. V. Nabatova, D. B. Lempert, I. L. Dalinger, A. V. Kormanov, O. V. Serushkina, A. B. Sheremetev, Dokl. Phys. Chem., 2018, 478, 15.

    Article  CAS  Google Scholar 

  22. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford, 2013.

    Google Scholar 

  23. A. V. Dzyabchenko, Russ. J. Phys. Chem. A, 2008, 82, 1663; DOI: https://doi.org/10.1134/S0036024408100075.

    Article  CAS  Google Scholar 

  24. D. S. Coombes, Philos. Mag. B Phys. Condens. Matter; Stat. Mech. Electron. Opt. Magn. Prop., 1996, 73, 117.

    CAS  Google Scholar 

  25. A. V. Dzyabchenko, Russ. J. Phys. Chem. A, 2008, 82, 758; DOI: https://doi.org/10.1134/S0036024408050129.

    Article  CAS  Google Scholar 

  26. R. S. Mulliken, J. Chem. Phys., 1955, 23, 2338; DOI: https://doi.org/10.1063/1.1741876.

    Article  CAS  Google Scholar 

  27. A. J. Stone, Chem. Phys. Lett., 1981, 83, 233; DOI: https://doi.org/10.1016/0009-2614(81)85452-8.

    Article  CAS  Google Scholar 

  28. A. F. Bedford, P. B. Edmondson, C. T. Mortimer, J. Chem. Soc., 1962, 2927; DOI: https://doi.org/10.1039/JR9620002927.

  29. E. A. Miroshnichenko, T. S. Kon’kova, Yu. N. Matyushin, Ya. O. Inozemtsev, A. B. Vorob’eva, A. V. Inozemtsev, Gorenie i vzryv [Combusion and Explosion], 2012, 5, 291 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Baraboshkin.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1893–1899, October, 2021.

This work was carried out using resources of the MVS-100K supercomputer at the Interdepartmental Supercomputer Center of the Russian Academy of Sciences.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraboshkin, N.M., Stratulat, AM. & Pivina, T.S. Theoretical estimation of the sublimation enthalpy of azoles. Russ Chem Bull 70, 1893–1899 (2021). https://doi.org/10.1007/s11172-021-3293-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3293-1

Key words

Navigation