Skip to main content

Advertisement

Log in

Structure and properties of chitosan salt complexes with ascorbic acid diastereomers

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The study attests the effect of l- and d-diastereomers of ascorbic acid, which were used to prepare a salt form of chitosan, on the conformational features, structure, properties, supramolecular ordering, and biological activity of chitosan l- and d-ascorbates. The three-dimensional organization and functional characteristics of the diastereomeric salt form of the polymer are shown to be determined primarily by the configuration of the chiral ligand. The presented results open new routes to the design of chitosan-containing materials with controlled stereo-structure and biological functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rinaudo, Prog. Polym. Sci., 2006, 31, 603; DOI: https://doi.org/10.1016/j.progpolymsci.2006.06.001.

    Article  CAS  Google Scholar 

  2. R. A. A. Muzzarelli, Carbohydr. Polym., 2011, 83, 1433; DOI: https://doi.org/10.1016/j.carbpol.2010.10.044.

    Article  CAS  Google Scholar 

  3. V. P. Varlamov, A. V. Il’ina, B. Ts. Shagdarova, A. P. Lunkov, I. S. Mysyakina, Biochemistry (Engl. Transl.), 2020, 85, 154; DOI: https://doi.org/10.1134/S0006297920140084.

    CAS  Google Scholar 

  4. E. O. Zemlyakova, Yu. O. Privar, D. A. Shashura, O. V. Koryakova, A. V. Pestov, Russ. Chem. Bull., 2019, 68, 1264; DOI: https://doi.org/10.1007/s11172-019-2551-y.

    Article  CAS  Google Scholar 

  5. N. R. Kildeeva, M. A. Belokon, N. A. Sazhnev, A. E. Chalykh, T. F. Petrova, V. V. Matveev, E. A. Svidchenko, N. M. Surin, Polymers, 2020, 12, 1086; DOI: https://doi.org/10.3390/polym12051086.

    Article  CAS  Google Scholar 

  6. J. Singh, P. K. Dutta, J. Polym. Res., 2009, 16, 231; DOI: https://doi.org/10.1007/s10965-008-9221-3.

    Article  CAS  Google Scholar 

  7. N. O. Gegel, Y. Yu. Zhuravleva, A. B. Shipovskaya, O. N. Malinkina, I. V. Zudina, Polymers, 2018, 10, 259; DOI: https://doi.org/10.3390/polym10030259.

    Article  Google Scholar 

  8. E. V. Shadrina, O. N. Malinkina, T. G. Khonina, A. B. Shipovskaya, V. I. Fomina, E. Yu. Larchenko, N. A. Popova, I. G. Zyryanova, L. P. Larionov, Russ. Chem. Bull., 2015, 64, 1633; DOI: https://doi.org/10.1007/s11172-015-1053-9.

    Article  CAS  Google Scholar 

  9. A. E. Chalykh, T. F. Petrova, V. V. Matveev, V. K. Gerasimov, R. R. Khasbiullin, A. A. Shcherbina, N. A. Abaturova, Russ. Chem. Bull., 2020, 69, 675; DOI: https://doi.org/10.1007/s11172-020-2817-4.

    Article  CAS  Google Scholar 

  10. M. Koralewski, K. H. Bodek, K. Marczewska, Polish Chitin Soc., 2006, 11, 29.

    Google Scholar 

  11. A. B. Shipovskaya, V. I. Fomina, O. F. Kazmicheva, G. N. Timofeeva, B. A. Komarov, Polym. Sci., Ser. B (Engl. Transl.), 2007, 49, 288; DOI: https://doi.org/10.1134/S156009040711005X.

    Article  Google Scholar 

  12. A. B. Shipovskaya, O. N. Malinkina, V. I. Fomina, D. A. Rudenko, S. Yu. Shchegolev, Russ. Chem. Bull., 2015, 64, 1172; DOI: https://doi.org/10.1007/s11172-015-0995-2.

    Article  CAS  Google Scholar 

  13. S.-M. Xie, L-M. Yuan, J. Sep. Sci., 2018, 6; DOI: https://doi.org/10.1002/jssc.201800656.

  14. D. A. Tsioupi, R. I. Stefan-van-Staden, C. P. Kapnissi-Christodoulou, Electrophoresis, 2013, 34, 178; DOI: https://doi.org/10.1002/elps.201200239.

    Article  CAS  Google Scholar 

  15. E. Salehi, P. Daraei, A. A. Shamsabadi, Carbohydr. Polym., 2016, 152, 419; DOI: https://doi.org/10.1016/j.carbpol.2016.07.033.

    Article  CAS  Google Scholar 

  16. T.-D. Nguyen, B. U. Peres, R. M. Carvalho, M. J. MacLachlan, Adv. Funct. Mater., 2016, 26, 2875; DOI: https://doi.org/10.1002/adfm.201505032.

    Article  CAS  Google Scholar 

  17. C. Liu, C. Dong, S. Liu, Y. Yang, Z. Zhang, Carbohydr. Polym., 2020, 257, 117534; DOI: https://doi.org/10.1016/j.carbpol.2020.117534.

    Article  Google Scholar 

  18. S. Rezgui, A. Amrane, F. Fourcade, A. Assadi, L. Monser, N. Adhoum, Appl. Catal. B: Environ., 2018, 226, 346; DOI: https://doi.org/10.1016/j.apcatb.2017.12.061.

    Article  CAS  Google Scholar 

  19. A. El. Kadib, Chem. Sus. Chem., 2015, 8, 217; DOI: https://doi.org/10.1002/cssc.201402718.

    Article  CAS  Google Scholar 

  20. M. Liu, L. Zhang, T. Wang, Chem. Rev., 2015, 115, 7304; DOI: https://doi.org/10.1021/cr500671p.

    Article  CAS  Google Scholar 

  21. J. Singh, P. K. Dutta, J. Dutta, A. J. Hunt, D. J. Macquarrie, J. H. Clark, Carbohydr. Polym., 2009, 76, 188; DOI: https://doi.org/10.1016/j.carbpol.2008.10.011.

    Article  CAS  Google Scholar 

  22. S. A. Lermontov, N. Sipyagina, A. N. Malkova, V. K. Ivanov, Microporous. Mesoporous. Mater., 2017, 237, 127; DOI: https://doi.org/10.1016/j.micromeso.2016.09.018.

    Article  CAS  Google Scholar 

  23. A. B. Shipovskaya, V. I. Fomina, D. A. Rudenko, S. Yu. Shchyogolev, Int. J. Polym. Sci., 2013, Article ID 825296, 6 p.; DOI: https://doi.org/10.1155/2013/825296.

  24. A. B. Shipovskaya, V. I. Fomina, O. F. Kazmicheva, D. A. Rudenko, O. N. Malinkina, Polym. Sci., Ser. A. (Engl. Transl.), 2017, 59, 330; DOI: https://doi.org/10.1134/S0965545X17030154.

    Article  CAS  Google Scholar 

  25. Y. Wen, H. Chen, Y. Yuan, D. Xu, X. Kang, J. Environ. Manage., 2011, 13, 879; DOI: https://doi.org/10.1039/C0EM00593B.

    CAS  Google Scholar 

  26. H. J. Schneider, Chemomechanical Gels—Actuators and Sensors, in Chemoresponsive Materials, Ed. H. J. Schneider, RSC Publishing, Cambridge, 2015, 44.

    Chapter  Google Scholar 

  27. S. Rossi, M. Marciello, G. Sandri, M. C. Bonferoni, F. Ferrari, C. Caramella, Pharm. Dev. Technol., 2008, 13, 513; DOI: https://doi.org/10.1080/10837450802288865.

    Article  CAS  Google Scholar 

  28. H. A. Elshoky, T. A. Salaheldin, M. A. Ali, M. H. Gaber, Int. J. Biol. Macromol., 2018, 115, 358; DOI: https://doi.org/10.1016/j.ijbiomac.2018.04.055.

    Article  CAS  Google Scholar 

  29. T. Tsujikawa, O. Kanauchi, A. Andoh, T. Saotome, M. Sasaki, Y. Fujiyama, T. Bamba, Nutrition, 2003, 19, 137; DOI: https://doi.org/10.1016/S0899-9007(02)00958-9.

    Article  CAS  Google Scholar 

  30. K. S. Özdemir, V. Gökmen, LWT, 2017, 76, 172; DOI: https://doi.org/10.1016/j.lwt.2016.10.057.

    Article  Google Scholar 

  31. X. Liu, J. Ren, Y. Zhu, W. Han, H. Xuan, L. Ge, Colloids. Surf. A: Physicochem. Eng. Asp., 2016, 502, 102; DOI: https://doi.org/10.1016/j.colsurfa.2016.05.018.

    Article  CAS  Google Scholar 

  32. K. Ogawa, K. Nakata, A. Yamamoto, Y. Nitta, Chem. Mater., 1996, 8, 2349; DOI: https://doi.org/10.1021/cm9601751.

    Article  CAS  Google Scholar 

  33. O. N. Malinkina, N. O. Gegel, A. B. Shipovskaya, J. Mol. Liq., 2019, 284, 75; DOI: https://doi.org/10.1016/j.molliq.2019.03.164.

    Article  CAS  Google Scholar 

  34. A. B. Shipovskaya, S. L. Shmakov, N. O. Gegel, Carbohydr. Polym., 2019, 206, 476; DOI: https://doi.org/10.1016/j.carbpol.2018.11.026.

    Article  CAS  Google Scholar 

  35. 137 S. M. Rogacheva, A. S. Zhutov, N. A. Shilova, I. N. Klochkova, S. V. Borisova, Izv. Sarat. Un-ta. Nov. Ser. Ser. Khim. Biol. Ekol, [Buyl. Saratov Univ. (New Ser.), Ser. Chem, Biol, Ecol.], 2020, 20, 137 (in Russian); DOI: https://doi.org/10.18500/1816-9775-2020-20-2-137-145.

    Google Scholar 

  36. N. O. Gegel, I. V. Zudina, O. N. Malinkina, A. B. Shipovskaya, Microbiology (Engl. Transl.), 2018, 87, 732; DOI: https://doi.org/10.1134/S0026365618050105.

    Article  CAS  Google Scholar 

  37. T. N. Lugovitskaya, I. V. Zudina, A. B. Shipovskaya, Russ. J. Appl. Chem. (Engl. Transl.), 2020, 93, 80; DOI: https://doi.org/10.1134/S0044461820010090.

    Article  CAS  Google Scholar 

  38. Pat. RF 2711920, Byul. Izobret. [Inventor Bull.], 2020, 3 (in Russian).

  39. A. F. Al Zubeidi, O. N. Malinkina, I. V. Zudina, O. Yu. Ksenofontova, N. V. Ostrovsky, Modern Problems of Science and Education. Surgery, 2016 (in Russian); http://www.science-ducation.ru/article/view?id=25942.

  40. M. Ambrosi, P. L. Nostro, E. Fratini, L. Giustini, B. W. Ninham, P. Baglioni, J. Phys. Chem. B, 2009, 113, 1404; DOI: https://doi.org/10.1021/jp8092644.

    Article  CAS  Google Scholar 

  41. V. A. Tverdislov, E. V. Malyshko, Symmetry, 2020, 12, 587; DOI: https://doi.org/10.3390/sym12040587.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Shipovskaya.

Additional information

Based on the materials of the VIII All-Russian Kargin Conference “Polymers-2020” (November 9–13, 2020, Moscow).

Published in Russian in Izyestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1765–1774, September, 2021.

This study was financially supported by the Russian Science Foundation (Project No. 17-73-10076) and within the framework of the state contract FSI No. 3161GS1/48642 (2019/2020).

All experiments on animals were performed in compliance with ethical standards and in accordance with Directive 2010/63/EU of the European Parliament and of Council of 22 September 2010 on the protection of animals used for scientific purposes.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shipovskaya, A.B., Malinkina, O.N., Gegel, N.O. et al. Structure and properties of chitosan salt complexes with ascorbic acid diastereomers. Russ Chem Bull 70, 1765–1774 (2021). https://doi.org/10.1007/s11172-021-3281-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3281-5

Key words

Navigation