Skip to main content
Log in

Modification of the mechanism of proton conductivity of the perfluorinated membrane copolymer by nanodiamonds

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Proton conducting membranes based on a perfluorinated copolymer with short side chains (of the Aquivion® type) are promising for the use in hydrogen fuel cells and overcome in characteristics traditionally used long-chain membranes of the Nation® type. To improve the characteristics of Aquivion® membranes, we used modifying additives in the form of functionalized nanodiamonds. The mechanism of proton conductivity of composite membranes with nanodiamonds is modified by introducing additional ionogenic groups into the structure on the surface of nanodiamonds. The dependences of the conductivity and mechanical properties of the prepared composite membranes on the sign of the surface charge of the introduced nanodiamonds are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vul, O. Shenderova, Detonation Nanodiamonds. Sci. Applications, Pan Stanford, Singapore, 2014.

    Book  Google Scholar 

  2. D. Ho, Nanodiamonds:Applications in Biology and Nanoscale Medicine, Springer, New York, Dordrecht, Heidelberg, 2009.

    Google Scholar 

  3. A. E. Aleksenskii, A. V. Shvidchenko, 22nd European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes and Nitrides (DIAMOND 2011), Garmish—Partenkirchen, Germany, September 4–8, 2011, P. 1.108.

  4. V. Yu. Dolmatov, A. N. Ozerin, I. I. Kulakova, A. A. Bochechka, N. M. Lapchuk, V. Myllymäki, A. Vehanen, Russ. Chem. Rev., 2020, 89, 1428; DOI: https://doi.org/10.1070/RCR4924.

    Article  CAS  Google Scholar 

  5. A. E. Aleksenskiy, E. D. Eydelman, A. Ya. Vul, Nanosci. Nanotechnol. Lett., 2011, 3, 68; DOI: https://doi.org/10.1166/nnl.2011.1122.

    Article  CAS  Google Scholar 

  6. O. Williams, J. Hees, C. Dieker, W. Jäger, L. Kirste, C. E. Nebel, ACS Nano, 2010, 4, 4824; DOI: https://doi.org/10.1021/nn100748k.

    Article  CAS  Google Scholar 

  7. P. V. Melnikov, A. Yu. Aleksandrovskaya, A. V. Safonov, N. M. Popova, B. V. Spitsin, A. O. Naumova, N. K. Zaitsev, Mendeleev Commun., 2020, 30, 453; DOI: https://doi.org/10.1016/j.mencom.2020.07.015.

    Article  CAS  Google Scholar 

  8. V. Nesvizhevsky, U. Koster, M. Dubois, N. Batisse, L. Frezet, A. Bosak, L. Gines, O. Williams, Carbon, 2018, 130, 799; DOI: https://doi.org/10.1016/j.carbon.2018.01.086.

    Article  CAS  Google Scholar 

  9. A. Bosak, A. Dideikin, M. Dubois, O. Ivankov, E. Lychagin, A. Muzychka, G. Nekhaev, V. Nesvizhevsky, A. Nezvanov, R. Schweins, A. Strelkov, A. Vul’, K. Zhernenkov, Materials, 2020, 13, 3337; DOI:https://doi.org/10.3390/ma13153337.

    Article  CAS  Google Scholar 

  10. O. N. Primachenko, E. A. Marinenko, A. S. Odinokov, S. V. Kononova, Yu. V. Kulvelis, V. T. Lebedev, Polym. Advanced Technologies, 2021, 32, 1386; DOI: https://doi.org/10.1002/pat.5191.

    Article  CAS  Google Scholar 

  11. M. Hamidi, K. Zarei, Russ. Chem. Bull., 2020, 69, 2107; DOI:https://doi.org/10.1007/s11172-020-3007-0.

    Article  CAS  Google Scholar 

  12. V. Polunin, Yu. E. Pogodina, I. A. Prikhno, A. B. Yaroslavtsev, Mendeleev Commun., 2019, 29, 661; DOI: https://doi.org/10.1016/j.mencom.2019.11.019.

    Article  CAS  Google Scholar 

  13. Yu. V. Kulvelis, O. N. Primachenko, A. S. Odinokov, A. V. Shvidchenko, V. Yu. Bayramukov, I. V. Gofman, V. T. Lebedev, S. S. Ivanchev, A. Ya. Vul, A. I. Kuklin, B. Wu, Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28, 140; DOI: https://doi.org/10.1080/1536383X.2019.1680981.

    Article  CAS  Google Scholar 

  14. O. N. Primachenko, Yu. V. Kulvelis, V. T. Lebedev, A. S. Odinokov, V. Yu. Bayramukov, E. A. Marinenko, I. V. Gofman, A. V. Shvidchenko, A. Ya. Vul, S. S. Ivanchev, Membranes and Membrane Technologies, 2020, 2, 1; DOI:https://doi.org/10.1134/S2517751620010060.

    Article  CAS  Google Scholar 

  15. S. S. Ivanchev, A. S. Odinokov, O. N. Primachenko, V. P. Tyulmankov, E. A. Marinenko, Method of Obtaining Perfluoro-3-oxapentenesulfonyl Fluoride Copolymer and Tetrafluoroethylene As Precursor of Perfluorinated Proton Conducting Membranes. Institute Macromolecular Compounds of the Russian Academy of Sciences, RF Pat. 2 671 812 C1, 2018, Bull. Izobr. [Invention Bulletin]. No. 31, 2018 (in Russian).

  16. O. N. Primachenko, A. S. Odinokov, E. A. Marinenko, Yu. V. Kulvelis, V. G. Barabanov, S. V. Kononova, J. Fluorine Chemistry, 2021, 244, 109736; DOI: https://doi.org/10.1016/j.jfluchem.2021.109736.

    Article  CAS  Google Scholar 

  17. O. N. Primachenko, A. S. Odinokov, V. G. Barabanov, V. P. Tyul’mankov, E. A. Marinenko, I. V. Gofman, S. S. Ivanchev, Russ. J. Appl. Chem., 2018, 91, 101; DOI: https://doi.org/10.1134/S1070427218010160.

    Article  CAS  Google Scholar 

  18. E. J. Garboczi, K. A. Snyder, J. F. Douglas, M. F. Thorpe, Phys. Rev. E, 1995, 52, 819; DOI: https://doi.org/10.1103/PhysRevE.52.819.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Kulvelis.

Additional information

Based on the materials of the VIII All-Russian Kargin Conference “Polymers-2020” (November 9–13, 2020, Moscow, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1713–1717, September, 2021.

This work was financially supported by the Ministry of Education and Science of the Russian Federation (Project No. 121040200129-2). The authors (Yu. V. Kulvelis, A. V. Shvidchenko, E. B. Yudina, V. T. Lebedev, and A. Ya. Vul) are grateful to the Russian Foundation for Basic Research for partial support of the present studies (Project No. 19-03-00249 A).

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulvelis, Y.V., Primachenko, O.N., Gofman, I.V. et al. Modification of the mechanism of proton conductivity of the perfluorinated membrane copolymer by nanodiamonds. Russ Chem Bull 70, 1713–1717 (2021). https://doi.org/10.1007/s11172-021-3274-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3274-4

Key words

Navigation