Skip to main content
Log in

Chloro(4-methylpent-3-en-1-ynyl)carbene: IR spectrum, structure, photochemical transformations, and reactions with alkenes

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

A comprehensive study of previously unknown chloro(4-methylpent-3-en-1-ynyl)carbene generated by photolysis of newly synthesized 5-chloroethynyl-3,3-dimethyl-3H-pyrazole was carried out both in low-temperature argon matrix and in solution at room temperature. Irradiation at 330 nm < λ < 380 nm causes the pyrazole to undergo a selective transformation to 1-chloro-3-diazo-5-methylhexa-4-en-1-yne. Photolysis of the latter at λ >520 nm leads to elimination of dinitrogen, thus producing the title carbene. Key structural parameters of this species were determined using matrix IR spectroscopy and quantum chemical calculations. It was established that the more stable state of the carbene is a singlet one. Further phototransformations of chloro(4-methylpent-3-en-1-ynyl)carbene lead to formation of isomeric 6-chloro-2-methylhexa-1,3-diene-5-yne. A preparative method for the synthesis of alkynylchlorocyclopropanes with yields up to 76% was proposed. It is based on photolysis of 5-chloroethynyl-3,3-dimethyl-3H-pyrazole in benzene in the presence of excess amounts of various alkenes. The possibility of using this approach for selective cyclopropanation of double bonds in the presence of hydroxyl groups in the substrate molecule was demonstrated taking 3-methylbut-2-enol as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. M. Nefedov, A. I. Ioffe, L. G. Menchikov, Khimiya karbenov [Chemistry of Carbenes], Khimiya, Moscow, 1990, 304 pp. (in Russian).

    Google Scholar 

  2. Contemporary Carbene Chemistry, V. 7, Eds R. A. Moss, M. P. Doyle, Wiley Series of Reactive Intermediates in Chemistry and Biology, John Wiley & Sons, Inc, 2013, 592 pp.

  3. C. Wentrup, Ang. Chem., Int. Ed. Engl., 2018, 57, 11508; DOI: https://doi.org/10.1002/anie.201804863.

    Article  CAS  Google Scholar 

  4. I. R. Ramazanov, A. V. Yaroslavova, N. R. Yaubasarov, E. N. Gil’manova, U. M. Dzhemilev, Russ. Chem. Bull., 2019, 68, 1869; DOI: https://doi.org/10.1007/s11172-019-2638-5.

    Article  CAS  Google Scholar 

  5. G. Z. Raskil’dina, Y. G. Borisova, L. V. Spirikhin, S. S. Zlotskii, Russ. Chem. Bull., 2019, 68, 2092; DOI: https://doi.org/10.1007/s11172-019-2671-4.

    Article  CAS  Google Scholar 

  6. P. Tang, Y. Qin, Synthesis, 2012, 44, 2969; DOI: https://doi.org/10.1055/s-0032-1317011.

    Article  CAS  Google Scholar 

  7. D. Y.-K. Chen, R. H. Pouwer, J.-A. Richard, Chem. Soc. Rev., 2012, 41, 4631; DOI: https://doi.org/10.1039/c2cs35067j.

    Article  CAS  PubMed  Google Scholar 

  8. C. Ebner, E. M. Carreira, Chem. Rev., 2017, 117, 11651; DOI: https://doi.org/10.1021/acs.chemrev.6b00798.

    Article  CAS  PubMed  Google Scholar 

  9. I. W. M. Smith, E. Herbst, Q. Chang, Monthly Notices Royal Astronom. Soc., 2004, 350, 323; DOI: https://doi.org/10.1111/j.1365-2966.2004.07656.x.

    Article  CAS  Google Scholar 

  10. R. I. Kaiser, C. Ochsenfeld, D. Stranges, M. Head-Gordon, Y. T. Lee, Faraday Discuss. Chem. Soc., 1998, 109, 183; DOI: https://doi.org/10.1039/a800077h.

    Article  CAS  Google Scholar 

  11. M. Noro, T. Masuda, A. S. Ichimura, N. Koga, H. Iwamura, J. Am. Chem. Soc., 1994, 116, 6179; DOI: https://doi.org/10.1021/ja00093a017.

    Article  CAS  Google Scholar 

  12. C. A. Taatjes S. J. Klippenstein, N. Hansen, J. A. Miller, T. A. Cool, J. Wang, M. E. Law, P. R. Westmoreland, Phys. Chem. Chem. Phys., 2005, 7, 806; DOI: https://doi.org/10.1039/b417160h.

    Article  CAS  PubMed  Google Scholar 

  13. N. Koga, M. Matsumura, M. Noro, H. Iwamura, Chem. Lett., 1991, 20, 1357; DOI: https://doi.org/10.1246/cl.1991.1357.

    Article  Google Scholar 

  14. J. A. Miller, S. J. Klippenstein, J. Phys. Chem. A, 2003, 107, 2680; DOI: https://doi.org/10.1021/jp0221082.

    Article  CAS  Google Scholar 

  15. K. N. Shavrin, I. V. Krylova, I. B. Shvedova, G. P. Okonnishnikova, I. E. Dolgy, O. M. Nefedov, J. Chem. Soc., Perkin Trans. 2, 1991, 1875; DOI: https://doi.org/10.1039/p29910001875.

  16. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, Russ. Chem. Bull., 2002, 51, 1237; DOI: https://doi.org/10.1023/A:1020952513679.

    Article  CAS  Google Scholar 

  17. H. M. L. Davies, T. A. Boebel, Tetrahedron Lett., 2000, 41, 8189; DOI: https://doi.org/10.1016/S0040-4039(00)01453-2.

    Article  CAS  Google Scholar 

  18. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, Mendeleev Commun., 2002, 12, 224; DOI: https://doi.org/10.1070/MC2002v012n06ABEH001703.

    Article  CAS  Google Scholar 

  19. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, Mendeleev Commun., 2003, 13, 52; DOI: https://doi.org/10.1070/MC2003v013n02ABEH001714.

    Article  CAS  Google Scholar 

  20. K. N. Shavrin, V. D. Gvozdev, I. Y. Pinus, I. P. Dotsenko, O. M. Nefedov, Russ. Chem. Bull., 2004, 53, 2546; DOI: https://doi.org/10.1007/s11172-005-0152-4.

    Article  CAS  Google Scholar 

  21. J. Barluenga, M. A. Fernández-Rodríguez, P. García-García, E. Aguilar, I. Merino, Chem. Eur. J., 2006, 12, 303; DOI: https://doi.org/10.1002/chem.200500918.

    Article  CAS  Google Scholar 

  22. A. Zampella, M. V. D’Auria, L. Minale, C. Debitus, C. Roussakis, J. Am. Chem. Soc., 1996, 118, 11085; DOI: https://doi.org/10.1021/ja9621004.

    Article  CAS  Google Scholar 

  23. C. E. Tedford, G. J. Phillips, R. Gregory, P. G. Pawlowski, L. Fadnis, M. A. Khan, S. M. Ali, M. K. Handley, S. L. Yates, J. Pharmacol. Exp. Ther., 1999, 289, 1160.

    CAS  PubMed  Google Scholar 

  24. J. W. Corbett, S. S. Ko, J. D. Rodgers, L. A. Gearhart, N. A. Magnus, L. T. Bacheler, S. Diamond, S. Jeffrey, R. M. Klabe, B. C. Cordova, S. Garber, K. Logue, G. L. Trainor, P. S. Anderson, S. K. Erickson-Viitanen, J. Med. Chem., 2000, 43, 2019; DOI: https://doi.org/10.1021/jm990580e.

    Article  CAS  PubMed  Google Scholar 

  25. V. D. Gvozdev, K. N. Shavrin, A. A. Ageshina, O. M. Nefedov, Russ. Chem. Bull., 2017, 66, 862; DOI: https://doi.org/10.1007/s11172-017-1819-3.

    Article  CAS  Google Scholar 

  26. J. M. Fernández-García, H. A. Garro, L. Fernández-García, P. García-García, M. A. Fernández-Rodríguez, I. Merino, E. Aguilar, Adv. Syn. Catal., 2017, 359, 3035; DOI: https://doi.org/10.1002/adsc.201700264.

    Article  CAS  Google Scholar 

  27. C. Zhang, M. Xu, J. Ren, Z. Wang, Eur. J. Org. Chem., 2016, 2016, 2467; DOI: https://doi.org/10.1002/ejoc.201600233.

    Article  CAS  Google Scholar 

  28. F. Yi, B. Huang, Q. Nie, M. Cai, Tetrahedron Lett., 2016, 57, 4405; DOI: https://doi.org/10.1016/j.tetlet.2016.08.062.

    Article  CAS  Google Scholar 

  29. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, Russ. Chem. Bull., 2010, 59, 1451; DOI: https://doi.org/10.1007/s11172-010-0261-6.

    Article  CAS  Google Scholar 

  30. K. N. Shavrin, V. D. Gvozdev, O. M. Nefedov, Mendeleev Commun., 2008, 18, 300; DOI: https://doi.org/10.1016/j.mencom.2008.11.003.

    Article  CAS  Google Scholar 

  31. B. M. Trost, J. Xie, N. Maulide, J. Am. Chem. Soc., 2008, 130, 17258; DOI: https://doi.org/10.1021/ja807894t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J. Barluenga, E. Tudela, R. Vicente, A. Ballesteros, M. Tomás, Angew. Chem., 2011, 123, 2155; DOI: https://doi.org/10.1002/ange.201007795.

    Article  Google Scholar 

  33. R. A. Seburg, E. V. Patterson, J. F. Stanton, R. J. McMahon, J. Am. Chem. Soc., 1997, 119, 5847; DOI: https://doi.org/10.1021/ja9638869.

    Article  CAS  Google Scholar 

  34. M. Steglich, J. Fulara, S. Maity, A. Nagy, J. P. Maier, J. Chem. Phys., 2015, 142, 1; DOI: https://doi.org/10.1063/1.4922920.

    Article  CAS  Google Scholar 

  35. N. P. Bowling, R. J. Halter, J. A. Hodges, R. A. Seburg, P. S. Thomas, C. S. Simmons, J. F. Stanton, R. J. McMahon, J. Am. Chem. Soc., 2006, 128, 3291; DOI: https://doi.org/10.1021/ja058252t.

    Article  CAS  PubMed  Google Scholar 

  36. P. S. Thomas, N. P. Bowling, R. J. Mcmahon, J. Am. Chem. Soc., 2009, 8649; DOI: https://doi.org/10.1021/ja901977s.

  37. S. N. Knezz, T. A. Waltz, B. C. Haenni, N. J. Burrmann, R. J. McMahon, J. Am. Chem. Soc., 2016, 138, 12596; DOI: https://doi.org/10.1021/jacs.6b07444.

    Article  CAS  PubMed  Google Scholar 

  38. V. S. Thimmakondu, I. Ulusoy, A. K. Wilson, A. Karton, J. Phys. Chem. A, 2019, 123, 6618; DOI: https://doi.org/10.1021/acs.jpca.9b06036.

    Article  CAS  PubMed  Google Scholar 

  39. G. Maier, T. Preiss, H. P. Reisenauer, B. A. Hess, L. J. Schaad, J. Am. Chem. Soc., 1994, 116, 2014; DOI: https://doi.org/10.1021/ja00084a047.

    Article  CAS  Google Scholar 

  40. S. E. Boganov, V. I. Faustov, K. N. Shavrin, V. D. Gvozdev, V. M. Promyslov, M. P. Egorov, O. M. Nefedov, J. Am. Chem. Soc., 2009, 131, 14688; DOI: https://doi.org/10.1021/ja901508c.

    Article  CAS  PubMed  Google Scholar 

  41. E. G. Baskir, V. D. Gvozdev, K. N. Shavrin, M. P. Egorov, O. M. Nefedov, J. Phys. Chem. A, 2019, 123, 9175; DOI: https://doi.org/10.1021/acs.jpca.9b06798.

    Article  CAS  PubMed  Google Scholar 

  42. V. D. Gvozdev, K. N. Shavrin, E. G. Baskir, O. M. Nefedov, M. P. Egorov, Mendeleev Commun., 2019, 29, 140; DOI: https://doi.org/10.1016/j.mencom.2019.03.006.

    Article  CAS  Google Scholar 

  43. E. A. Carter, W. A. Goddard, J. Chem. Phys., 1988, 88, 1752; DOI: https://doi.org/10.1063/1.454099.

    Article  CAS  Google Scholar 

  44. I. Likhotvorik, Z. Zhu, E. L. Tae, E. Tippmann, B. T. Hill, M. S. Platz, J. Am. Chem. Soc., 2001, 123, 6061; DOI: https://doi.org/10.1021/ja004235m.

    Article  CAS  PubMed  Google Scholar 

  45. S. Nyambo, C. Karshenas, S. A. Reid, P. Lolur, R. Dawes, J. Chem. Phys., 2015, 142, 1; DOI: https://doi.org/10.1063/1.4921466.

    Article  CAS  Google Scholar 

  46. S. D. Andrews, A. C. Day, P. Raymond, M. C. Whiting, Org. Synth., 1970, 50, 27; DOI: https://doi.org/10.15227/orgsyn.050.0027.

    Article  CAS  Google Scholar 

  47. E. Block, F. Tries, C. He, C. Guo, M. Thiruvazhi, P. J. Toscano, Org. Lett., 2003, 5, 1325; DOI: https://doi.org/10.1021/ol034258g.

    Article  CAS  PubMed  Google Scholar 

  48. Y. Sasson, O. W. Webster, J. Chem. Soc., Chem. Commun., 1992, 1200; DOI: https://doi.org/10.1039/c39920001200.

  49. X. Zeng, Y. Tu, Z. Zhang, C. You, J. Wu, Z. Ye, J. Zhao, J. Org. Chem., 2019, 84, 4458; DOI: https://doi.org/10.1021/acs.joc.8b03192.

    Article  CAS  PubMed  Google Scholar 

  50. M. Franck-Neumann, M. Miesch, S. Gries, H. Irngartinger, Liebigs Ann. Chem., 1992, 1992, 825; DOI: https://doi.org/10.1002/jlac.1992199201136.

    Article  Google Scholar 

  51. M. Franck-Neumann, J.-J. Lohmann, Ang. Chem., Int. Ed. Engl., 1977, 16, 323; DOI: https://doi.org/10.1002/anie.197703231.

    Article  Google Scholar 

  52. M. Franck-Neumann, P. Geoffroy, Tetrahedron Lett, 1983, 24, 1779; DOI: https://doi.org/10.1016/S0040-4039(00)81768-2.

    Article  CAS  Google Scholar 

  53. P. H. Mueller, N. G. Rondan, K. N. Houk, J. F. Harrison, D. Hooper, B. H. Willen, J. F. Liebman, J. Am. Chem. Soc., 1981, 103, 5049; DOI: https://doi.org/10.1021/ja00407a015.

    Article  CAS  Google Scholar 

  54. K. K. Irikura, W. A. Goddard, J. L. Beauchamp, J. Am. Chem. Soc., 1992, 114, 48; DOI: https://doi.org/10.1021/ja00027a006.

    Article  CAS  Google Scholar 

  55. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford (CT), 2013.

    Google Scholar 

  56. A. D. Becke, J. Chem. Phys., 1993, 98, 5648; DOI: https://doi.org/10.1063/1.464913.

    Article  CAS  Google Scholar 

  57. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785; DOI: https://doi.org/10.1103/PhysRevB.37.785.

    Article  CAS  Google Scholar 

  58. R. A. Kendall, T. H. Dunning, R. J. Harrison, J. Chem. Phys., 1992, 96, 6796; DOI: https://doi.org/10.1063/1.462569.

    Article  CAS  Google Scholar 

  59. A. K. Wilson, D. E. Woon, K. A. Peterson, T. H. Dunning, J. Chem. Phys., 1999, 110, 7667; DOI: https://doi.org/10.1063/1.478678.

    Article  CAS  Google Scholar 

  60. G. A. Petersson, M. A. Al-Laham, J. Chem. Phys., 1991, 94, 6081; DOI: https://doi.org/10.1063/1.460447.

    Article  CAS  Google Scholar 

  61. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215; DOI: https://doi.org/10.1007/s00214-007-0310-x.

    Article  CAS  Google Scholar 

  62. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297; DOI: https://doi.org/10.1039/b508541a.

    Article  CAS  PubMed  Google Scholar 

  63. B. Chan, L. Radom, J. Chem. Theor. Com., 2016, 12, 3774; DOI: https://doi.org/10.1021/acs.jctc.6b00554.

    Article  CAS  Google Scholar 

  64. L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys., 2007, 126, 084108; DOI: https://doi.org/10.1063/1.2436888.

    Article  PubMed  CAS  Google Scholar 

  65. L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys., 2007, 127, 124105; DOI: https://doi.org/10.1063/1.2770701.

    Article  PubMed  CAS  Google Scholar 

  66. U. C. Yoon, S. L. Quillen, P. S. Mariano, R. Swanson, J. L. Stavinoha, E. Bay, J. Am. Chem, Soc., 1983, 105, 1204; DOI: https://doi.org/10.1021/ja00343a022.

    Article  CAS  Google Scholar 

  67. A. C. Day, M. C. Whiting, Org. Synth., 1970, 50, 3.

    Article  CAS  Google Scholar 

  68. M. Franck-Neumann, P. Geoffroy, J. J. Lohmann, Tetrahedron Lett., 1983, 24, 1775; DOI: https://doi.org/10.1016/S0040-4039(00)81767-0.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Gvozdev.

Additional information

This work was financially supported by the Russian Foundation for Basic Research (Project No. 18-03-01037 A).

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1575–1583, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gvozdev, V.D., Shavrin, K.N., Baskir, E.G. et al. Chloro(4-methylpent-3-en-1-ynyl)carbene: IR spectrum, structure, photochemical transformations, and reactions with alkenes. Russ Chem Bull 70, 1575–1583 (2021). https://doi.org/10.1007/s11172-021-3254-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3254-8

Key words

Navigation