Skip to main content
Log in

Tautomerism and basicity of carboxylic acid guanyl hydrazides (acylaminoguanidines)

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The acid-base properties, structures, and tautomerism of protonated and free forms of carboxylic acid guanyl hydrazides (acylaminoguanidines) were studied using experimental and theoretical methods. According to the experimental data, guanyl hydrazides are relatively strong bases (pKa 8.1-8.9 in water at 25 °C) in spite of the presence of the electron-withdrawing carbonyl group in their molecules. The results of studying by NMR spectroscopy, X-ray diffraction analysis, and DFT calculations show that in polar media free guanyl hydrazides predominantly exist as zwitterionic tautomers (inner salts) with positive charge localization on the protonated guanidine moiety and negative charge localization on the deprotonated amide group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Katritzky, L. Huang, M. Chahar, R. Sakhuja, C. D. Hall, Chem. Rev., 2012, 112, 1633; DOI: https://doi.org/10.1021/cr200076q.

    Article  CAS  PubMed  Google Scholar 

  2. A. A. Aly, A. M. Nour-El-Din, Arkivoc, 2008, 2008, 153; DOI: https://doi.org/10.3998/ark.5550190.0009.106.

    Article  Google Scholar 

  3. F. Kurzer, L. E. A. Godfrey, Angew. Chem., Int. Ed., 1963, 2, 459; DOI: https://doi.org/10.1002/anie.196304591.

    Article  Google Scholar 

  4. N. N. Makhova, L. I. Belen’kii, G. A. Gazieva, I. L. Dalinger, L. S. Konstantinova, V. V. Kuznetsov, A. N. Kravchenko, M. M. Krayushkin, O. A. Rakitin, A. M. Starosotnikov, L. L. Fershtat, S. A. Shevelev, V. Z. Shirinian, V. N. Yarovenko, Russ. Chem. Rev., 2020, 89, 55; DOI: https://doi.org/10.1070/rcr4914.

    Article  CAS  Google Scholar 

  5. M. A. Prezent, S. V. Baranin, Chem. Heterocycl. Compd., 2019, 55, 1131; DOI: https://doi.org/10.1007/s10593-019-02590-7.

    Article  CAS  Google Scholar 

  6. P. J. Thornalley, Arch. Biochem. Biophys., 2003, 419, 31; DOI: https://doi.org/10.1016/j.abb.2003.08.013.

    Article  CAS  PubMed  Google Scholar 

  7. K. Byun, Y. Yoo, M. Son, J. Lee, G.-B. Jeong, Y. M. Park, G. H. Salekdeh, B. Lee, Pharmacol. Ther., 2017, 177, 44; DOI: https://doi.org/10.1016/j.pharmthera.2017.02.030.

    Article  CAS  PubMed  Google Scholar 

  8. Z. Tian-Yi, L. Chao, L. Ya-Ru, L. Xiao-Zhen, S. Liang-Peng, Z. Chang-Ji, P. Hu-Ri, Lett. Drug Des. Discovery, 2016, 13, 1063; DOI: https://doi.org/10.2174/1570180813666160819151239.

    Article  CAS  Google Scholar 

  9. H. Hammoud, K. Elhabazi, R. Quillet, I. Bertin, V. Utard, E. Laboureyras, J.-J. Bourguignon, F. Bihel, G. Simonnet, F. Simonin, M. Schmitt, ACS Chem. Neurosci., 2018, 9, 2599; DOI: https://doi.org/10.1021/acschemneuro.8b00099.

    Article  CAS  PubMed  Google Scholar 

  10. D. Ilager, H. Seo, N. P. Shetti, S. S. Kalanur, T. M. Aminabhavi, Sci. Total Environ., 2020, 743, 140691; DOI: https://doi.org/10.1016/j.scitotenv.2020.140691.

    Article  CAS  PubMed  Google Scholar 

  11. G. García-Díez, R. Ramis, N. Mora-Diez, ACS Omega, 2020, 5, 14502; DOI: https://doi.org/10.1021/acsomega.0c01175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. G. García-Díez, N. Mora-Diez, Antioxidants, 2020, 9, 756; DOI: https://doi.org/10.3390/antiox9080756.

    Article  PubMed Central  CAS  Google Scholar 

  13. J. Xiang, Q.-Q. Su, L.-J. Luo, T.-C. Lau, Dalton Trans., 2019, 48, 11404; DOI: https://doi.org/10.1039/C9DT01711A.

    Article  CAS  PubMed  Google Scholar 

  14. R. Selvakumar, B. Nirosha, S. Vairam, T. Premkumar, S. Govindarajan, Inorg. Chim. Acta, 2018, 482, 774; DOI: https://doi.org/10.1016/j.ica.2018.07.021.

    Article  CAS  Google Scholar 

  15. A. Pushpaveni, S. Packiaraj, S. Govindarajan, G. T. McCandless, C. F. Fronczek, F. R. Fronczek, Inorg. Chim. Acta, 2018, 471, 537; DOI: https://doi.org/10.1016/j.ica.2017.11.059.

    Article  CAS  Google Scholar 

  16. V. Y. Grinshtein, G. I. Chipen, J. Gen. Chem. USSR, 1961, 31, 886.

    Google Scholar 

  17. W.-K. Chui, A. Dolzhenko, A. Dolzhenko, Heterocycles, 2007, 71, 429; DOI: https://doi.org/10.3987/COM-06-10936.

    Article  Google Scholar 

  18. A. V. Dolzhenko, G. Pastorin, A. V. Dolzhenko, W. K. Chui, Tetrahedron Lett., 2009, 50, 2124; DOI: https://doi.org/10.1016/j.tetlet.2009.02.172.

    Article  CAS  Google Scholar 

  19. V. Chernyshev, A. Chernysheva, Z. Starikova, Heterocycles, 2010, 81, 2291; DOI: https://doi.org/10.3987/COM-10-12017.

    Article  CAS  Google Scholar 

  20. V. M. Chernyshev, A. V. Chernysheva, E. V. Tarasova, V. V. Ivanov, Z. A. Starikova, Acta Crystallogr., Sect. E, 2010, 66, o1152; DOI: https://doi.org/10.1107/S1600536810014108.

    Article  CAS  Google Scholar 

  21. E. V. Tarasova, V. M. Chernyshev, A. V. Chernysheva, R. S. Abagyan, Russ. J. Appl. Chem., 2011, 84, 400; DOI: https://doi.org/10.1134/S1070427211030116.

    Article  CAS  Google Scholar 

  22. C. Temple, Triazoles 1, 2, 4, John Wiley & Sons, New York-Chichester-Brisbane-Toronto, 1981, 791 pp.

    Google Scholar 

  23. J. B. Polya, in Comprehensive Heterocyclic Chemistry, Eds A. R. Katritzky, C. W. Rees, Pergamon, Oxford, 1984, p. 733; DOI: https://doi.org/10.1016/B978-008096519-2.00080-1.

  24. A. V. Chernysheva, V. M. Chernyshev, P. V. Korolenko, V. A. Taranushich, Russ. J. Appl. Chem., 2008, 81, 1813; DOI: https://doi.org/10.1134/S1070427208100200.

    Article  CAS  Google Scholar 

  25. V. M. Chernyshev, A. V. Chernysheva, V. A. Taranushich, Russ. J. Appl. Chem., 2009, 82, 276; DOI: https://doi.org/10.1134/S1070427209020219.

    Article  CAS  Google Scholar 

  26. V. M. Chernyshev, E. V. Tarasova, A. V. Chernysheva, V. A. Taranushich, Russ. J. Appl. Chem., 2011, 84, 1890; DOI: https://doi.org/10.1134/S1070427211110097.

    Article  CAS  Google Scholar 

  27. V. M. Chernyshev, A. V. Astakhov, V. B. Rybakov, A. V. Chernysheva, E. V. Tarasova, Russ. Chem. Bull., 2014, 63, 2591; DOI: https://doi.org/10.1007/s11172-014-0784-3.

    Article  CAS  Google Scholar 

  28. F. P. L. Lim, L. M. Hu, E. R. T. Tiekink, A. V. Dolzhenko, Tetrahedron Lett., 2018, 59, 3792; DOI: https://doi.org/10.1016/j.tetlet.2018.09.018.

    Article  CAS  Google Scholar 

  29. F. P. L. Lim, L. Y. Tan, E. R. T. Tiekink, A. V. Dolzhenko, RSC Adv., 2018, 8, 22351; DOI: https://doi.org/10.1039/C8RA04576C.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. W. Li, J. Zha, P. A. Spear, Z. Li, L. Yang, Z. Wang, Aquat. Toxicol., 2009, 92, 50; DOI: https://doi.org/10.1016/j.aquatox.2009.01.006.

    Article  CAS  PubMed  Google Scholar 

  31. G. Fischer, in Advances in Heterocyclic Chemistry, Eds E. F. V. Scriven, C. A. Ramsden, Academic Press, San Diego, 2019, 128, 1; DOI: https://doi.org/10.1016/bs.aihch.2018.10.002.

  32. H. Bera, M. H. Lee, L. Sun, A. V. Dolzhenko, W. K. Chui, Bioorg. Chem., 2013, 50, 34; DOI: https://doi.org/10.1016/j.bioorg.2013.07.004.

    Article  CAS  PubMed  Google Scholar 

  33. H. A. M. El-Sherief, B. G. M. Youssif, S. N. A. Bukhari, M. Abdel-Aziz, H. M. Abdel-Rahman, Bioorg. Chem., 2018, 76, 314; DOI: https://doi.org/10.1016/j.bioorg.2017.12.013.

    Article  CAS  PubMed  Google Scholar 

  34. N. Phadke Swathi, V. D. P. Alva, S. Samshuddin, J. Bio Tribo Corros., 2017, 3, 42; DOI: https://doi.org/10.1007/s40735-017-0102-3.

    Article  Google Scholar 

  35. A. M. Khedr, M. Gaber, R. M. Issa, H. Erten, Dyes Pigm., 2005, 67, 117; DOI: https://doi.org/10.1016/j.dyepig.2004.11.004.

    Article  CAS  Google Scholar 

  36. A. M. Khedr, Chem. Pap., 2008, 62, 541; DOI: https://doi.org/10.2478/s11696-008-0071-6.

    Article  CAS  Google Scholar 

  37. A. Aboelnaga, S. Shaarawy, A. G. Hassabo, Colloids Surf., B, 2018, 172, 545; DOI: https://doi.org/10.1016/j.colsurfb.2018.09.012.

    Article  CAS  Google Scholar 

  38. N. S. Aleksandrova, S. S. Semyakin, A. A. Anisimov, M. I. Struchkova, A. B. Sheremetev, Russ. Chem. Bull., 2018, 67, 2035; DOI: https://doi.org/10.1007/s11172-018-2325-y.

    Article  CAS  Google Scholar 

  39. M. Xu, G. Cheng, H. Xiong, B. Wang, X. Ju, H. Yang, New J. Chem., 2019, 43, 11157; DOI: https://doi.org/10.1039/C9NJ01445D.

    Article  CAS  Google Scholar 

  40. G. Zhao, P. Yin, D. Kumar, G. H. Imler, D. A. Parrish, J. M. Shreeve, J. Am. Chem. Soc., 2019, 141, 19581; DOI: https://doi.org/10.1021/jacs.9b11326.

    Article  CAS  PubMed  Google Scholar 

  41. D.-M. Chen, N.-N. Zhang, C.-S. Liu, M. Du, J. Mater. Chem. C, 2017, 5, 2311; DOI: https://doi.org/10.1039/C6TC05349A.

    Article  CAS  Google Scholar 

  42. F. Bu, Y. Zhang, L. Hong, W. Zhao, D. Li, J. Li, H. Na, C. Zhao, J. Membr. Sci., 2018, 545, 167; DOI: https://doi.org/10.1016/j.memsci.2017.09.072.

    Article  CAS  Google Scholar 

  43. K. Y. Cho, H. An, X. H. Do, K. Choi, H. G. Yoon, H.-K. Jeong, J. S. Lee, K.-Y. Baek, J. Mater. Chem. A, 2018, 6, 18912; DOI: https://doi.org/10.1039/C8TA02797H.

    Article  CAS  Google Scholar 

  44. K. Sumoto, F. Fujisaki, H. Usami, S. Nakashima, S. Iwashita, Y. Kurose, N. Kashige, F. Miake, Heterocycles, 2011, 83, 1843; DOI: https://doi.org/10.3987/COM-11-12218.

    Article  CAS  Google Scholar 

  45. F. Fujisaki, H. Usami, S. Nakashima, S. Nishida, T. Fujioka, N. Kashige, F. Miake, K. Sumoto, Heterocycles, 2013, 87, 665; DOI: https://doi.org/10.3987/com-12-12654.

    Article  CAS  Google Scholar 

  46. H. Mohammad, P. V. N. Reddy, D. Monteleone, A. S. Mayhoub, M. Cushman, M. N. Seleem, Eur. J. Med. Chem., 2015, 94, 306; DOI: https://doi.org/10.1016/j.ejmech.2015.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. D. Edmont, R. Rocher, C. Plisson, J. Chenault, Bioorg. Med. Chem. Lett., 2000, 10, 1831; DOI: https://doi.org/10.1016/S0960-894X(00)00354-1.

    Article  CAS  PubMed  Google Scholar 

  48. R. Selvakumar, S. J. Geib, A. Muthu Sankar, T. Premkumar, S. Govindarajan, J. Phys. Chem. Solids, 2015, 86, 49; DOI: https://doi.org/10.1016/j.jpcs.2015.05.024.

    Article  CAS  Google Scholar 

  49. J. Thiele, Justus Liebigs Ann. Chem., 1892, 270, 1; DOI: https://doi.org/10.1002/jlac.18922700102.

    Article  Google Scholar 

  50. J. Thiele, K. Heidenreich, Ber. Dtsch. Chem. Ges., 1893, 26, 2598; DOI: https://doi.org/10.1002/cber.18930260358.

    Article  Google Scholar 

  51. E. Lieber, G. B. L. Smith, Chem. Rev., 1939, 25, 213; DOI: https://doi.org/10.1021/cr60081a003.

    Article  CAS  Google Scholar 

  52. V. M. Chernyshev, A. V. Chernysheva, Chem. Heterocycl. Compd., 2010, 46, 627; DOI: https://doi.org/10.1007/s10593-010-0559-1.

    Article  CAS  Google Scholar 

  53. M. Koskinen, I. Mutikainen, P. Tilus, E. Pelttari, M. Korvela, H. Elo, Monatsh. Chem., 1997, 128, 767; DOI: https://doi.org/10.1007/BF00807087.

    Article  CAS  Google Scholar 

  54. A. Albert, E. P. Serjeant, The Determination of Ionization Constants: A Laboratory Manual, Springer Netherlands, Dordrecht, 1984, 218 pp.

    Book  Google Scholar 

  55. S. Ganguly, K. K. Kundu, Can. J. Chem., 1994, 72, 1120; DOI: https://doi.org/10.1139/v94-143.

    Article  CAS  Google Scholar 

  56. L. Fabbrizzi, M. Micheloni, P. Paoletti, G. Schwarzenbach, J. Am. Chem. Soc., 1977, 99, 5574; DOI: https://doi.org/10.1021/ja00459a006.

    Article  CAS  Google Scholar 

  57. A. M. Abdel-Megeed, H. M. Abdel-Rahman, G.-E. S. Alkaramany, M. A. El-Gendy, Eur. J. Med. Chem., 2009, 44, 117; DOI: https://doi.org/10.1016/j.ejmech.2008.03.017.

    Article  CAS  PubMed  Google Scholar 

  58. H. A. M. El-Sherief, B. G. M. Youssif, S. N. Abbas Bukhari, A. H. Abdelazeem, M. Abdel-Aziz, H. M. Abdel-Rahman, Eur. J. Med. Chem., 2018, 156, 774; DOI: https://doi.org/10.1016/j.ejmech.2018.07.024.

    Article  CAS  PubMed  Google Scholar 

  59. A. Y. Hassan, M. T. Sarg, A. H. Bayoumi, M. A. El-Deeb, J. Heterocycl. Chem., 2018, 55, 1450; DOI: https://doi.org/10.1002/jhet.3184.

    Article  CAS  Google Scholar 

  60. J. Ding, F.-D. Cao, Y.-R. Geng, Y. Tian, P. Li, X.-F. Li, L.-J. Huang, J. Asian Nat. Prod. Res., 2019, 21, 1190; DOI: https://doi.org/10.1080/10286020.2018.1529030.

    Article  CAS  PubMed  Google Scholar 

  61. L. Huang, J. Ding, M. Li, Z. Hou, Y. Geng, X. Li, H. Yu, Eur. J. Med. Chem., 2020, 185, 111824; DOI: https://doi.org/10.1016/j.ejmech.2019.111824.

    Article  CAS  PubMed  Google Scholar 

  62. A. Nagle, A. Biggart, C. Be, H. Srinivas, A. Hein, D. Caridha, R. J. Sciotti, B. Pybus, M. Kreishman-Deitrick, B. Bursulaya, Y. H. Lai, M.-Y. Gao, F. Liang, C. J. N. Mathison, X. Liu, V. Yeh, J. Smith, I. Lerario, Y. Xie, D. Chianelli, M. Gibney, A. Berman, Y.-L. Chen, J. Jiricek, L. C. Davis, X. Liu, J. Ballard, S. Khare, F. K. Eggimann, A. Luneau, T. Groessl, M. Shapiro, W. Richmond, K. Johnson, P. J. Rudewicz, S. P. S. Rao, C. Thompson, T. Tuntland, G. Spraggon, R. J. Glynne, F. Supek, C. Wiesmann, V. Molteni, J. Med. Chem., 2020, 63, 10773; DOI: https://doi.org/10.1021/acs.jmedchem.0c00499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. E. Hoggarth, J. Chem. Soc. (Resumed), 1950, 612; DOI: https://doi.org/10.1039/JR9500000612.

  64. Z. Györgydeák, W. Holzer, R. W. Kunz, A. Linden, Monatsh. Chem., 1995, 126, 733; DOI: https://doi.org/10.1007/BF00807164.

    Article  Google Scholar 

  65. Z. Györgydeák, W. Holzer, K. Mereiter, Monatsh. Chem., 1999, 130, 899; DOI: https://doi.org/10.1007/PL00010271.

    Google Scholar 

  66. W. Holzer, Z. Györgydeák, Monatsh. Chem., 1992, 123, 1163; DOI: https://doi.org/10.1007/BF00808279.

    Article  CAS  Google Scholar 

  67. J. C. Messeder, L. W. Tinoco, J. D. Figueroa-Villar, E. M. Souza, R. Santa Rita, S. L. de Castro, Bioorg. Med. Chem. Lett., 1995, 5, 3079; DOI: https://doi.org/10.1016/0960-894X(95)00541-5.

    Article  CAS  Google Scholar 

  68. P. Dvortsák, J. Reiter, T. Somorai, P. Sohár, Magn. Reson. Chem., 1985, 23, 194; DOI: https://doi.org/10.1002/mrc.1260230313.

    Article  Google Scholar 

  69. S. A. Richards, J. C. Hollerton, Essential Practical NMR for Organic Chemistry, John Wiley & Sons, Ltd, Chichester, United Kingdom, 2010, 228 pp.

    Book  Google Scholar 

  70. E. Pretsch, P. Bühlmann, M. Badertscher, in Structure Determination of Organic Compounds: Tables of Spectral Data, Springer, Berlin-Heidelberg, 2020, p. 307; DOI: https://doi.org/10.1007/978-3-662-62439-5_7.

    Book  Google Scholar 

  71. T. M. Klapötke, P. Mayer, C. Miró Sabaté, J. M. Welch, N. Wiegand, Inorg. Chem., 2008, 47, 6014; DOI: https://doi.org/10.1021/ic800353y.

    Article  PubMed  CAS  Google Scholar 

  72. Z. Macháčková, I. Němec, K. Teubner, P. Němec, P. Vaněk, Z. Mička, J. Mol. Struct., 2007, 832, 101; DOI: https://doi.org/10.1016/j.molstruc.2006.08.006.

    Article  CAS  Google Scholar 

  73. V. Videnova-Adrabińska, I. Turowska-Tyrk, T. Borowiak, G. Dutkiewicz, New J. Chem., 2001, 25, 1403; DOI: https://doi.org/10.1039/B009197I.

    Article  Google Scholar 

  74. A. V. Astakhov, V. M. Chernyshev, Chem. Heterocycl. Compd., 2014, 50, 319; DOI: https://doi.org/10.1007/s10593-014-1479-2.

    Article  CAS  Google Scholar 

  75. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1; DOI: https://doi.org/10.1039/P298700000S1.

  76. M. Burke-Laing, M. Laing, Acta Crystallogr., Sect. B, 1976, 32, 3216; DOI: https://doi.org/10.1107/S0567740876009989.

    Article  Google Scholar 

  77. T. Kolev, R. Petrova, Acta Crystallogr., Sect. E, 2003, 59, o447; DOI: https://doi.org/10.1107/S1600536803004203.

    Article  CAS  Google Scholar 

  78. M. Eberspächer, T. M. Klapötke, C. M. Sabaté, Helv. Chim. Acta, 2009, 92, 977; DOI: https://doi.org/10.1002/hlca.200800386.

    Article  CAS  Google Scholar 

  79. W.-X. Feng, A. van der Lee, Y.-M. Legrand, E. Petit, D. Dumitrescu, C.-Y. Su, M. Barboiu, Org. Lett., 2016, 18, 5556; DOI: https://doi.org/10.1021/acs.orglett.6b02802.

    Article  CAS  PubMed  Google Scholar 

  80. W.-X. Feng, L. Dai, S.-P. Zheng, A. van der Lee, C.-Y. Su, M. Barboiu, Chem. Commun., 2018, 54, 9738; DOI: https://doi.org/10.1039/C8CC04561E.

    Article  CAS  Google Scholar 

  81. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, 2009.

  82. J. Tirado-Rives, W. L. Jorgensen, J. Chem. Theory Comput., 2008, 4, 297; DOI: https://doi.org/10.1021/ct700248k.

    Article  CAS  PubMed  Google Scholar 

  83. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem., 1994, 98, 11623; DOI: https://doi.org/10.1021/j100096a001.

    Article  CAS  Google Scholar 

  84. T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. R. Schleyer, J. Comput. Chem., 1983, 4, 294; DOI: https://doi.org/10.1002/jcc.540040303.

    Article  CAS  Google Scholar 

  85. R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys., 1980, 72, 650; DOI: https://doi.org/10.1063/1.438955.

    Article  CAS  Google Scholar 

  86. A. D. McLean, G. S. Chandler, J. Chem. Phys., 1980, 72, 5639; DOI: https://doi.org/10.1063/1.438980.

    Article  CAS  Google Scholar 

  87. S. M. Bachrach, in Computational Organic Chemistry, Ed. S. M. Bachrach, John Wiley & Sons, Inc., New Jersey, 2014, 1; DOI: https://doi.org/10.1002/9781118671191.ch1.

  88. A. Klamt, C. Moya, J. Palomar, J. Chem. Theory Comput., 2015, 11, 4220; DOI: https://doi.org/10.1021/acs.jctc.5b00601.

    Article  CAS  PubMed  Google Scholar 

  89. F. Lipparini, G. Scalmani, B. Mennucci, E. Cancès, M. Caricato, M. J. Frisch, J. Chem. Phys., 2010, 133, 014106; DOI: https://doi.org/10.1063/1.3454683.

    Article  PubMed  CAS  Google Scholar 

  90. B. Mennucci, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2, 386; DOI: https://doi.org/10.1002/wcms.1086.

    CAS  Google Scholar 

  91. G. Scalmani, M. J. Frisch, J. Chem. Phys., 2010, 132, 114110; DOI: https://doi.org/10.1063/1.3359469.

    Article  PubMed  CAS  Google Scholar 

  92. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999; DOI: https://doi.org/10.1021/cr9904009.

    Article  CAS  PubMed  Google Scholar 

  93. A. Dolzhenko, H.-S. Chia, W.-K. Chui, The 9th Intern. Electronic Conf. on Synthetic Organic Chemistry, 2005, p. 1484.

  94. G. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112; DOI: https://doi.org/10.1107/S0108767307043930.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Chernyshev.

Additional information

The authors are grateful to the Center for Collective Use “Nanotechnologies” at the M. I. Platov South-Russian State Polytechnic University and the Department of Structural Investigation at the N. D. Zelinsky Institute of Organic Chemistry (Russian Academy of Sciences) for analytical experiments.

This work was financially supported by the Russian Science Foundation (Project No. 19-73-10100).

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

† Deceased.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1509–1522, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astakhov, A.V., Tarasova, E.V., Chernysheva, A.V. et al. Tautomerism and basicity of carboxylic acid guanyl hydrazides (acylaminoguanidines). Russ Chem Bull 70, 1509–1522 (2021). https://doi.org/10.1007/s11172-021-3246-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3246-8

Key words

Navigation