Skip to main content
Log in

Phase separation in the Bi2O3-SiO2 system. Effect of cooling conditions on the phase composition and microstructure of solidification products

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The effect of heat treatment conditions (temperature and time of isothermal holding, temperature of the start of cooling and cooling conditions) of a melt containing 50 mol.% Bi2O3 and 50 mol.% SiO2 on the phase composition and macro- and microstructure of solidification products was studied. The temperatures and ranges of macroscopic phase separation of the melt were determined. Using physicochemical methods (powder X-ray diffraction, optical and scanning electron microscopy, and atomic absorption analysis), it was established that depending on the melt cooling conditions, solidification gives crystals of metastable bismuth silicate Bi2SiO5, or a mixture of crystalline phases and glass, or glass. The crucial influence of the holding temperature and time and the melt cooling rate on the crystallization of metastable Bi2SiO5 and formation of crystals of stable phases was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Aurivillius, C. I. Lindblom, P. Stenson, Acta Chem. Scand., 1964, 18, 1556–1557; DOI: https://doi.org/10.3891/acta.chem.scand.18-1555.

    Google Scholar 

  2. J. Ketterer, V. Kramer, Neues Jahrb. Mineral., Monatsh., 1986, 11, 13–18.

    Google Scholar 

  3. A. V. Firsov, I. E. Skorokhodov, A. V. Astaf’ev, A. A. Bush, S. Yu. Stefanovich, Yu. I. Venevtsev, Kristallografiya [Crystallography], 1984, 29, 509–512 (in Russian).

    CAS  Google Scholar 

  4. Yu. N. Venevtsev, A. A. Bush, E. D. Politova, S. Yu. Stefanovich, A. V. Firsov, I. N. Danilenko, L. I. Kosse, A. V. Astaf’iev, N. E. Skorohodov, A. Yu. Schashkov, B. S. Medvedev, A. E. Mirkin, S. I. Reiman, N. V. Rannev, V. A. Efremov, V. K. Trunov, Ferroelectrics, 1985, 63, 217–226; DOI: https://doi.org/10.1080/00150198508221403.

    Article  CAS  Google Scholar 

  5. Th. Maeder, Int. Mater. Rev., 2012, 58, 3–40; DOI: https://doi.org/10.1179/1743280412Y.0000000010.

    Article  CAS  Google Scholar 

  6. E. N. Voskresenskaya, L. I. Kurteeva, V. P. Zhereb, A. G. Anshits, Catalysis Today, 1992, 13, 599–602.

    Article  CAS  Google Scholar 

  7. V. P. Zhereb, E. N. Voskresenskaya, E. I. Kurteeva, V. F. Kargin, A. G. Anshits, React. Kinet. Catal. Lett., 1993, 50, No. 1–2, 327–332.

    Article  CAS  Google Scholar 

  8. W. Wei, J. Xie, S. Meng, X. Lü, Z. Yan, J. Zhu, H. Cui, J. Mater. Res., 2013, 28, 1658–1668; DOI: https://doi.org/10.1557/jmr.2013.65.

    Article  CAS  Google Scholar 

  9. X. J. Dai, Y. S. Luo, S. Y. Fu, W. Q. Chen, Y. Lu., Solid State Sci., 2010, 12, 637–642; DOI: https://doi.org/10.1016/j.solidstatesciences.2010.01.024.

    Article  CAS  Google Scholar 

  10. L. Zhang, W. Wang, S. Sun, J. Xu, M. Shang, J. Ren, Appl. Catal. B, 2010, 100, 97–101; DOI: https://doi.org/10.1016/j.apcatb.2010.07.018.

    Article  CAS  Google Scholar 

  11. J. A. Topping, N. Cameron, M. K. Murthy, J. Am. Ceramic Soc., 1974, 57, 519–521; DOI: https://doi.org/10.1111/j.1151-2916.1974.tb10800.x.

    Article  CAS  Google Scholar 

  12. G. Gattow, H. Fricke, Z. Anorg., Allg. Chemie, 1963, 324, No. 5–6, 287–296; DOI: https://doi.org/10.1002/zaac.19633240509.

    Article  CAS  Google Scholar 

  13. E. I. Speranskaya, V. M. Skorikov, G. M. Safronov, G. D. Mitkina, Izv. Akad. Nauk SSSR. Neogran. Mater. [Bull. USSR Acad. Sci. Inorg. Mater.], 1968, 4, 1374–1375 (in Russian).

    CAS  Google Scholar 

  14. Yu. F. Kargin, V. P. Zhereb, V. M. Skorikov, Zhurn. Neorgan. Khim. [J. Inorg. Chem.], 1991, 36, 2611–2616 (in Russian).

    CAS  Google Scholar 

  15. Y. Fei, S. Fan, J. Inorg. Mater, 1997, 12, 469–476 (in Chinese).

    CAS  Google Scholar 

  16. Y. T. Fei, S. J. Fan, R. Y. Sun, J. Y. Xu, M. Ishii, J. Mat. Sci. Lett., 2000, 19, 893–895; DOI: https://doi.org/10.1023/A:1006701901976.

    Article  CAS  Google Scholar 

  17. I. V. Tananaev, V. M. Skorikov, Yu. F. Kargin, V. P. Zhereb, Izv. Akad. Nauk SSSR. Neogran. Mater. [Bull. USSR Acad. Sci. Inorg. Mater.], 1978, 14, 2024–2028 (in Russian).

    CAS  Google Scholar 

  18. V. P. Zhereb, Yu. F. Kargin, V. M. Skorikov, Izv. Akad. Nauk SSSR. Neogran. Mater. [Bull. USSR Acad. Sci. Inorg. Mater.], 1978, 14, 2028–2032.

    Google Scholar 

  19. V. P. Zhereb, V. M. Skorikov, Inorg. Mater., 2003, 39, 121–145; DOI: https://doi.org/10.1023/B:INMA.0000008890.41755.90.

    Article  Google Scholar 

  20. V. P. Zhereb, Ph.D Thesis, Institute of General and Inorganic Chemistry, USSR Academy of Sciences, Moscow, 1980, p. 22 (in Russian).

  21. V. P. Zhereb, T. V. Bermeshev, Yu. F. Kargin, E. V. Mazurova, V. M. Denisov, Russ. J. Inorg. Mater., 2019, 55, 737–747; DOI: https://doi.org/10.1134/S0020168519060165.

    Article  CAS  Google Scholar 

  22. H. W. Guo, X. F. Wang, D. N. Gao, Sci. Sintering, 2011, 43, 353–362; DOI: https://doi.org/10.2298/SOS1103353G.

    Article  CAS  Google Scholar 

  23. H. Guo, in Glass Sci. Technol., Ed. V. M. Sglavo, IntechOpen, London, 2018, p. 61–76.

  24. Inventor’s Certificate 2115626 KA, Byul. izobret. [Invention Bull.], 1996.

  25. Y. Ke, W. Huang, S. K. Thatikonda, R. Chen, C. Yao, N. Qin, D. Bao, Curr. Appl. Phys., 2020, 20, 751–754; DOI: https://doi.org/10.1016/j.cap.2020.03.010.

    Article  Google Scholar 

  26. G. Tanimu, A. M. Aitani, S. Asaoka, H. Alasiri, Mol. Catal., 2020, 488, 110893; DOI: https://doi.org/10.1016/j.mcat.2020.110893.

    Article  CAS  Google Scholar 

  27. D. Sarkar, S. Ganguli, A. E. Praveen, V. Mahalingam, Mater. Adv., 2020, 1, 2019–2032; DOI: https://doi.org/10.1039/D0MA00363H.

    Article  CAS  Google Scholar 

  28. T. Haldar, U. Kumar, B. C. Yadav, V. V. Ravi Kanth Kumar, Ceram. Intern., 2021, 47, 1389–1398; DOI: https://doi.org/10.1016/j.ceramint.2020.08.262.

    Article  CAS  Google Scholar 

  29. H. R. Mahmoud, Fuel, 2020, 280, 118596; DOI: https://doi.org/10.1016/j.fuel.2020.118596.

    Article  CAS  Google Scholar 

  30. X. Guan, X. Zhang, C. Zhang, R. Li, Y. Wang, C. Fan, Composites Commun., 2020, 280, 100366; DOI: https://doi.org/10.1016/j.fuel.2020.118596.

    Article  Google Scholar 

  31. L. Dou, Y. Xiang, J. Zhong, J. Li, S. Huang, Mater. Lett., 2020, 261, 127117; DOI: https://doi.org/10.1016/j.matlet.2019.127117.

    Article  CAS  Google Scholar 

  32. A. Al-Keisy, L. Ren, T. Zheng, X. Xu, M. Higgins, W. Hao, Y. Du, Dalton Trans., 2017, 46, 15582–15588; DOI: https://doi.org/10.1039/C7DT03193A.

    Article  CAS  PubMed  Google Scholar 

  33. G. Cheng, J. Xiong, H. Yang, Z. Lu, R. Chen, Mater. Lett., 2012, 77, 25–28; DOI: https://doi.org/10.1016/j.matlet.2012.02.127.

    Article  CAS  Google Scholar 

  34. C. Zou, M. Liang, Z. Yang, X. Zhou, Y. Yang, S. Yang, Nanotechnology, 2020, 31, 345604; DOI: https://doi.org/10.1088/1361-6528/ab912f.

    Article  CAS  PubMed  Google Scholar 

  35. L. Dou, X. Jin, J. Chen, J. Zhong, J. Li, Y. Zeng, R. Duan, Appl. Surface Sci., 2020, 527, 146775; DOI: https://doi.org/10.1016/j.apsusc.2020.146775.

    Article  CAS  Google Scholar 

  36. Y. Wu, M. Li, X. Wang, L. Wang, H. Gao, Mater. Manufact. Proces., 2017, 32, 480–483; DOI: https://doi.org/10.1080/10426914.2016.1221081.

    Article  CAS  Google Scholar 

  37. J.-Q. Lu, X.-F. Wang, Y.-T. Wu, Y.-Q. Xu, Mater. Lett., 2012, 74, 200–202; DOI: https://doi.org/10.1016/j.matlet.2012.01.111.

    Article  CAS  Google Scholar 

  38. H.-T. Jiang, X.-F. Wang, L.-L. Wang, C.-L. Yu, J.-E. Mu, Mater. Manufact. Proces., 2013, 28, 336–340; DOI: https://doi.org/10.1080/10426914.2012.677906.

    Article  CAS  Google Scholar 

  39. G. Golubovskaya, E. D. Fakhrutdinova, V. A. Svetlichnyi, Proc. Int. Conf. Proceedings of VI International Scientific Schoolconference for Young Scientists “Catalysis: from Science to Industry” (Tomsk October 6–10, 2020), Tomsk, 2020, 50.

  40. D. Liu, J. Wang, M. Zhang, Y. Liu, Y. Zhu, Nanoscale, 2014, 6, 15222–15227; DOI: https://doi.org/10.1039/C4NR05058D.

    Article  CAS  PubMed  Google Scholar 

  41. D. Liu, W. Yao, J. Wang, Y. Liu, M. Zhang, Y. Zhu, Appl. Catal. B: Environ., 2015, 172, 100–107; DOI: https://doi.org/10.1016/j.apcatb.2015.01.037.

    Article  CAS  Google Scholar 

  42. M. Yamaguchi, T. Nagatomo, Y. Masuda, Jpn. J. Appl. Phys., 2001, 40, 5559–5563.

    Article  Google Scholar 

  43. M. Yamaguchi, K. Hiraki, T. Nagatomo, Y. Masuda, Jpn. J. Appl. Phys., 2000, 39, 5512–5516.

    Article  CAS  Google Scholar 

  44. Yu. Belik, T. Kharlamova, A. Vodyankin, V. Svetlichnyi, O. Vodyankina, Ceram. Inter., 2020, 46, 10797–10806; DOI: https://doi.org/10.1016/j.ceramint.2020.01.090.

    Article  CAS  Google Scholar 

  45. X. Feng, X. Qi, J. Li, L. Yang, M. Qiu, J. Yin, F. Lu, J. Zhong, Appl. Surface Sci., 2011, 257, 5571–5575; DOI: https://doi.org/10.1016/j.apsusc.2011.01.045.

    Article  CAS  Google Scholar 

  46. V. V. Borisova, E. V. Mironova, E. S. Bragina, I. A. Bondar’, Evraziiskii Soyuz Uchenykh [Eurasian Union of Scientists], 2017, 12, 45, 50–55 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Bermeshev.

Additional information

This study was performed within the State Assignment of the Ministry of Science and Higher Education of the Russian Federation (Theme FSRZ-2020-0013) using the equipment of at the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS”.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1462–1470, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bermeshev, T.V., Zhereb, V.P., Tas-Ool, R.N. et al. Phase separation in the Bi2O3-SiO2 system. Effect of cooling conditions on the phase composition and microstructure of solidification products. Russ Chem Bull 70, 1462–1470 (2021). https://doi.org/10.1007/s11172-021-3240-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3240-1

Key words

Navigation