Skip to main content
Log in

Reactions of ozone with olefins and dienes: anharmonic approximation in quantum chemical calculations

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The primary step of propene ozonolysis was studied using various quantum chemistry approaches including the M06-2X method, the double hybrid B2PLYP and PBEQIDH methods, and the coupled clusters method at the CCSD level with the aug-cc-pVDZ and aug-cc-pVTZ basis sets. Transition-state geometries, the energies of elementary steps of the reaction, and the activation barriers were determined. The rate constants for the reaction were calculated using the normal vibration frequencies obtained in the harmonic and anharmonic approximations. The rate constants for the ozonolysis of ethylene, fluoroethylene, chloroethylene, butadiene, and isoprene were calculated in the anharmonic approximation. The total rate constant for gas-phase ozonolysis of propene calculated for normal conditions in the harmonic (kharm) and anharmonic (kanh) approximations for all transition-state configurations taking account of the spatial degeneracy was 2160 and 4714 L (mol s)−1, respectively. The latter value better agrees with experimental data (5745 L (mol s)−1). The rate constants for the ozonolysis of chloroethylene, fluoroethylene, butadiene, and isoprene (characterized by asymmetric arrangement of substituents at the reaction center) calculated with allowance for anharmonicity demonstrate much better agreement with the experiment. The rate constant for ethylene ozonolysis calculated in the anharmonic approximation remains unchanged compared to that obtained in the harmonic approximation, whereas the rate constants for the chloroethylene and fluoroethylene ozonolysis increase two- to fourfold, respectively. Similar results were also obtained for butadiene, isoprene, and propene. For all these systems, taking account of anharmonicity has a stronger impact on the rate constants for the reaction in the case of DeMore mechanism compared to the Criegee mechanism; i.e., the harmonic approximation is insufficient for entropy calculations for molecules with asymmetrically arranged or bulky substituents at the double bond in the reaction center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Criegee, Angew. Chem., 1975, 87, 765; DOI: https://doi.org/10.1002/ange.19750872104.

    Article  CAS  Google Scholar 

  2. W. B. DeMore, Int. J. Chem. Kinet., 1969, 1, 209; DOI: https://doi.org/10.1002/kin.550010207.

    Article  CAS  Google Scholar 

  3. O. B. Gadzhiev, S. K. Ignatov, B. E. Krisyuk, A. V. Maiorov, S. Gangopadhyay, A. E. Masunov, J. Phys. Chem. A, 2012, 116, 10420; DOI: https://doi.org/10.1021/jp307738p.

    Article  CAS  Google Scholar 

  4. R. Atkinson, J. Phys. Chem. Ref. Dat., 1994, Monogr. 2, 11.

  5. R. Atkinson, J. Arey, Chem. Rev., 2003, 103, 4605; DOI: https://doi.org/10.1021/cr0206420.

    Article  CAS  Google Scholar 

  6. R. Wegener, T. Brauers, R. Koppmann, S. Rodriguez Bares, F. Rohrer, R. Tillmann, A. Wahner, A. Hansel, A. Wisthaler, J. Geophys. Res., 2007, 112, D13301; DOI: https://doi.org/10.1029/2006JD007531.

    Article  Google Scholar 

  7. W.-T. Chan, I. P. Hamilton, J. Chem. Phys., 2003, 118, 1688; DOI: https://doi.org/10.1063/1.1531104.

    Article  CAS  Google Scholar 

  8. C. Kalalian, G. El Dib, H. J. Singh, P. K. Rao, E. Roth, A. Chakir, Atmos. Envir., 2020, 223, 117306; DOI: https://doi.org/10.1016/j.atmosenv.2020.117306.

    Article  CAS  Google Scholar 

  9. E. T. Denisov, B. E. Krisyuk, Russ. J. Phys. Chem. B, 2007, 26, 34.

    CAS  Google Scholar 

  10. B. E. Krisyuk, A. V. Mayorov, E. A. Mamin, V. A. Ovchinnikov, A. A. Popov, Kinet. Catal. (Engl. Transl.), 2015, 56, 76; DOI: https://doi.org/10.1134/S0023158415010085.

    Article  CAS  Google Scholar 

  11. B. E. Krisyuk, A. V. Mayorov, A. A. Popov, Kinet. Catal. (Engl. Transl.), 2016, 57, 326; DOI: https://doi.org/10.1134/S0023158416030083.

    Article  CAS  Google Scholar 

  12. B. E. Krisyuk, A. V. Mayorov, E. A. Mamin, A. A. Popov, in Characterization and Development of Novel Materials Research Compendium, Nova Science Publ. Inc., 2013, 357 pp.

  13. A. V. Mayorov, E. A. Mamin, V. A. Ovchinnikov, A. A. Popov, B. E. Krisyuk, in Ozone and Ozone Depletion: Sources, Environmental Impact, and Health, Nova Science Publ. Inc., 2012, p. 49.

  14. B. E. Krisyuk, A. V. Mayorov, V. A. Ovchinnikov, A. A. Popov, Khim. fizika [Chem. Phys.], 2013, 32, 3 (in Russian).

    CAS  Google Scholar 

  15. J. Treacy, M. El Hag, D. O’Farrell, H. Sidebottom, Ber. Bunsenges.-Phys. Chem. Chem. Phys., 1992, 96, 422; DOI: https://doi.org/10.1002/bbpc.19920960337.

    Article  CAS  Google Scholar 

  16. J.-I. Choe, M. Srinivasan, R. L. Kuczkowski, J. Am. Chem. Soc., 1983, 105, 4703.

    Article  CAS  Google Scholar 

  17. E. V. Avzianova, P. A. Ariya, Int. J. Chem. Kinet., 2002, 34, 678; DOI: https://doi.org/10.1002/kin.10093.

    Article  CAS  Google Scholar 

  18. A. G. Lewin, D. Johnson, D. W. Price, G. Marston, Phys. Chem. Chem. Phys., 2001, 3, 1253.

    Article  CAS  Google Scholar 

  19. R. B. McClurg, R. C. Flagan, W. A. Goddard, J. Chem. Phys., 1997, 106, 6675.

    Article  CAS  Google Scholar 

  20. P. Y. Ayala, H. B. Schlegel, J. Chem. Phys., 1998, 108, 2314; DOI: https://doi.org/10.1063/1.475616.

    Article  CAS  Google Scholar 

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010; DOI: https://doi.org/10.1159/000348293.

    Google Scholar 

  22. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem, 1993, 14, 1347; DOI: https://doi.org/10.1002/jcc.540141112.

    Article  CAS  Google Scholar 

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016.

    Google Scholar 

  24. S. K. Ignatov, Moltran v.2.5, Nizhny Novgorod, 2004–2015; www.qchem.unn.ru/moltran.

  25. R. C. Lord, P. Venkateswarlu, J. Opt. Soc. Amer., 1953, 43, 1079.

    Article  CAS  Google Scholar 

  26. T. Shimanouchi, Tables of Molecular Vibrational Frequencies Consolidated, Vol. I, NSRDS-NBS 39, Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), University of Tokyo, Tokyo, 1972, 39, 164 pp.

    Google Scholar 

  27. F. D. Rossini, Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds: Comprising the Tables of the American Petroleum Institute Research Project 44, December 31, 1952, Carnegie Press, 1953.

  28. B. W. Gay, Jr., P. L. Hanst, J. J. Bufalini, R. C. Noonan, Environ. Sci. Technol., 1976, 10, 58.

    Article  CAS  Google Scholar 

  29. E. Sanhuesa, I. C. Hisatsune, J. Heicklen, Chem. Rev., 1976, 76, 801.

    Article  Google Scholar 

  30. J. Zhang, S. Hatakeyama, H. Akimoto, Int. J. Chem. Kinet., 1983, 15, 655.

    Article  CAS  Google Scholar 

  31. S. A. Adeniji, J. A. Kerr, M. R. Williams, Int. J. Chem. Kinet., 1981, 13, 209.

    Article  CAS  Google Scholar 

  32. L. Chen, T. Uchimaru, S. Kutsuna, K. Tokuhashi, A. Sekiya, Int. J. Chem. Kinet., 2010, 42, 619; DOI: https://doi.org/10.1002/kin.20506.

    Article  CAS  Google Scholar 

  33. V. G. Khamaganov, R. A. Hites, J. Phys. Chem. A, 2001, 105, 815; DOI: https://doi.org/10.1021/jp002730z.

    Article  CAS  Google Scholar 

  34. E. Grosjean, D. Grosjean, Int. J. Chem. Kinet., 1996, 28, 911; DOI: https://doi.org/10.1002/(SICI)1097-4601(1996)28:12<911::AID-KIN8>3.0.CO;2-Q.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. Krisyuk.

Additional information

This work was financially supported by the Institute of Problems of Chemical Physics, Russian Academy of Sciences, within the framework of the State Assignment 0089-2019-0005 (State Registration No. AAAA-A19119101690058-9).

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1454–1461, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayorov, A.V., Krisyuk, B.E. Reactions of ozone with olefins and dienes: anharmonic approximation in quantum chemical calculations. Russ Chem Bull 70, 1454–1461 (2021). https://doi.org/10.1007/s11172-021-3239-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3239-7

Key words

Navigation