Skip to main content
Log in

Heteroligand macrotetracyclic complexes of 3d elements with phthalocyanine and two fluoride anions: molecular structures and thermodynamic parameters, as determined from DFT calculations

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Molecular structure calculations of heteroligand macrotetracyclic complexes of 3d elements MIV (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu) with phthalocyanine as the (NNNN) donor-atom ligand and two fluoride anions were carried out in terms of the density functional theory with the OPBE functional and the TZVP basis set. The key bond lengths, bond angles, and non-bond angles in the complexes are presented. The standard enthalpies, entropies, and Gibbs energies of formation of the compounds are calculated. According to calculations, all complexes have tetragonal bipyramidal or similar structures. The complex-forming agent MIV lies in the plane formed by the donor nitrogen atoms of the phthalocyanine ligand. The M-N bond lengths as well as the M-F bond lengths are equal to one another. All six-membered metal chelate rings in the complexes are identical to one another both in terms of the sum and the set of the bond angles. The same holds for the five-membered rings containing nitrogen atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kasuda, M. Tsutsui, Coord. Chem. Rev., 1980, 32, 67; DOI: https://doi.org/10.1016/S0010-8545(00)80370-7.

    Article  Google Scholar 

  2. A. L. Thomas, Phthalocyanines. Research & Applications, CRC Press, 1990.

  3. W. Sliva, B. Mianovska, Transit. Met. Chem., 2000, 25, 491; DOI: https://doi.org/10.1023/A:1007054025169.

    Article  Google Scholar 

  4. G. M. Mamardashvili, N. Z. Mamardashvili, O. I. Koifman, Russ. Chem. Rev., 2008, 77, 59; DOI: https://doi.org/10.1070/RC2008v077n01ABEH003743.

    Article  CAS  Google Scholar 

  5. T. N. Lomova, Aksial’no koordinirovannye metalloporfiriny v nauke i praktike [Axially Coordinate Metalloporphyrins in Science and Practice], URSS-KRASAND, Moscow, 2018, 700 pp. (in Russian).

    Google Scholar 

  6. V. Novakova, M. P. Donzello, C. Ercolani, P. Zimcik, P. A. Stuzhin, Coord. Chem. Rev., 2018, 361, 1.

    Article  CAS  Google Scholar 

  7. I. A. Lebedeva (Yablokova), S. S. Ivanova, Y. A. Zhabanov, P. A. Stuzhin, V. Novakova, J. Fluor. Chem., 2018, 214, 86.

    Article  Google Scholar 

  8. O. G. Khelevina, A. S. Malyasova, J. Porphyr. Phthalocyanines, 2019, 23, 1251; DOI: https://doi.org/10.1142/S1088424619300246.

    Article  CAS  Google Scholar 

  9. K. Okada, A. Sumida, R. Inagaki, M. Inamo, Inorg. Chim. Acta, 2012, 392, 473; DOI: https://doi.org/10.1016/j.ica.2012.04.001.

    Article  CAS  Google Scholar 

  10. C. Colomban, E. V. Kudric, P. Afanasiev, A. B. Sorokin, J. Am. Chem. Soc., 2014, 136, 11321; DOI: https://doi.org/10.1021/ja505437h.

    Article  CAS  Google Scholar 

  11. J. W. Buchler, K. Rohbock, Inorg. Nucl. Chem. Lett., 1972, 8, 1073; DOI: https://doi.org/10.1016/0020-1650(72)80196-X.

    Article  CAS  Google Scholar 

  12. R. Guilard, P. Richard, M. El Borai, E. Laviron, J. Chem. Soc., Chem. Commun., 1980, 516; DOI: https://doi.org/10.1039/C39800000516.

  13. C. Lecomte, J. Protas, P. Richard, J.-M. Barbe, R. Guilard, J. Chem. Soc., Dalton Trans., 1982, 247; DOI: https://doi.org/10.1039/DT9820000247.

  14. O. V. Mikhailov, D. V. Chachkov, Russ. J. Inorg. Chem., 2020, 65, 887; DOI: https://doi.org/10.1134/S003602362006011X.

    Article  CAS  Google Scholar 

  15. O. V. Mikhailov, D. V. Chachkov, Russ. Chem. Bull., 2020, 69, 893; DOI: https://doi.org/10.1007/s11172-020-2846-z.

    Article  CAS  Google Scholar 

  16. D. V. Chachkov, O. V. Mikhailov, Eur. Chem. Bull., 2020, 9, 313; DOI: https://doi.org/10.17628/ecb.2020.9.313-316.

    Article  CAS  Google Scholar 

  17. O. V. Mikhailov, D.V. Chachkov, Russ. J. Inorg. Chem., 2013, 58, 174; DOI: https://doi.org/10.1134/S0036023613020186.

    Article  CAS  Google Scholar 

  18. D. V. Chachkov, O. V. Mikhailov, Russ. J. Inorg. Chem., 2013, 58, 1073; DOI: https://doi.org/10.1134/S0036023613090052.

    Article  CAS  Google Scholar 

  19. D. V. Chachkov, O. V. Mikhailov, Russ. J. Inorg. Chem., 2014, 59, 218; DOI: https://doi.org/10.1134/S0036023614030024.

    Article  CAS  Google Scholar 

  20. O. V. Mikhailov, D.V. Chachkov, Macroheterocycles, 2016, 9, 268; DOI: https://doi.org/10.6060/mhc160211m.

    Article  CAS  Google Scholar 

  21. A. Schaefer, H. Horn, R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571; DOI: https://doi.org/10.1063/1.463096.

    Article  CAS  Google Scholar 

  22. A. Schaefer, C. Huber, R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829; DOI: https://doi.org/10.1063/1.467146.

    Article  CAS  Google Scholar 

  23. W.-M. Hoe, A. Cohen, N.C. Handy, Chem. Phys. Lett., 2001, 341, 319; DOI: https://doi.org/10.1016/S0009-2614(01)00581-4.

    Article  CAS  Google Scholar 

  24. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865; DOI: https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  Google Scholar 

  25. H. Paulsen, L. Duelund, H. Winkler, H. Toftlund, A. X. Trautwein, Inorg. Chem., 2001, 40, 2201; DOI: https://doi.org/10.1021/ic000954q.

    Article  CAS  Google Scholar 

  26. M. Swart, A. R. Groenhof, A. W. Ehlers, K. Lammertsma, J. Phys. Chem. A., 2004, 108, 5479; DOI: https://doi.org/10.1021/jp049043i.

    Article  CAS  Google Scholar 

  27. M. Swart, A. W. Ehlers, K. Lammertsma, Mol. Phys., 2004, 102, 2467; DOI: https://doi.org/10.1080/0026897042000275017.

    Article  CAS  Google Scholar 

  28. M. Swart, Inorg. Chim. Acta, 2007, 360, 179; DOI: https://doi.org/10.1016/j.ica.2006.07.073.

    Article  CAS  Google Scholar 

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  30. W. Harnischmacher, R. Hoppe, Angew. Chem., 1973, 85, 590.

    CAS  Google Scholar 

  31. M. Bicher, D. Jinga, Rom. Biotechnol. Lett., 1999, 4, 129.

    CAS  Google Scholar 

  32. O. V. Mikhailov, D. V. Chachkov, Inorg. Chem. Commun., 2019, 106, 224.

    Article  CAS  Google Scholar 

  33. J. W. Ochterski, Thermochemistry in Gaussian, Gaussian, Inc., Wallingford CT, 2000.

    Google Scholar 

  34. S. A. Znoiko, T. V. Tikhomirova, A. I. Petlina, I. V. Novikov, A. S. Vashurin, O. I. Koifman, Russ. Chem. Bull., 2019, 68, 1271; DOI: https://doi.org/10.1007/s11172-019-2552-x.

    Article  CAS  Google Scholar 

  35. N. F. Goldshleger, M. A. Lapshina, V. E. Baulin, A. A. Shiryaev, Yu. G. Gorbunova, A. Yu. Tsivadze, Russ. Chem. Bull., 2019, 69, 1223; DOI: https://doi.org/10.1007/s11172-020-2893-5.

    Article  Google Scholar 

  36. A. S. Vashurin, T. V. Tikhomirova, A. A. Filippova, N. A. Futerman, V. E. Maizlish, Yu. S. Marfin, Russ. Chem. Bull., 2020, 69, 1349; DOI: https://doi.org/10.1007/s11172-020-2909-1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Mikhailov or D. V. Chachkov.

Additional information

All quantum chemical calculations were carried out on computational facilities at the Joint Supercomputer Center (JSCC) of the RAS.* The authors express their gratitude to the staff of the JSCC for help in performing the calculations.

The contribution made by D. V. Chachkov was financially supported within the framework of the State Assignment to the Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences”.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1438–1445, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, O.V., Chachkov, D.V. Heteroligand macrotetracyclic complexes of 3d elements with phthalocyanine and two fluoride anions: molecular structures and thermodynamic parameters, as determined from DFT calculations. Russ Chem Bull 70, 1438–1445 (2021). https://doi.org/10.1007/s11172-021-3237-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3237-9

Key words

Navigation